基于WCSPH-SPIM流固耦合模型的弹性体入水模拟

施书文1,张桂勇1,2,3,王双强1,胡泰安1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (18) : 103-108.

PDF(1556 KB)
PDF(1556 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (18) : 103-108.
论文

基于WCSPH-SPIM流固耦合模型的弹性体入水模拟

  • 施书文1,张桂勇1,2,3,王双强1,胡泰安1
作者信息 +

Numerical simulation of the water entry of an elastomer by using the WCSPH-SPIM coupled method

  • SHI Shuwen1,ZHANG Guiyong1,2,3,WANG Shuangqiang1,HU Taian1
Author information +
文章历史 +

摘要

对于入水砰击这类强非线性问题,运用网格方法不可避免会发生网格畸变、自由液面捕捉不准确等问题,而拉格朗日型无网格方法在处理该类问题时展现出很强的优越性。针对这一特点,本文采用两种无网格方法分别作为流体与固体求解器、建立流固耦合模型模拟入水问题。在通过刚性体入水问题对弱可压光滑粒子水动力法(WCSPH)进行验证之后,采用新提出的弱可压光滑粒子水动力与光滑点插值(S-PIM)流固耦合方法(WCSPH-SPIM)分别对弹性体低速和高速入水问题进行了计算。结果显示关键点处变形与压力随时间的变化情况都与试验值或半解析解吻合良好,证明了本文方法对模拟弹性体入水问题的有效性。

Abstract

Consider the strong nonlinear characteristic of water entry problem, the grid-based methods will inevitably encounter the problems such as grid distortion and inaccurate liquid surface capture. However, the Lagrangian meshless methods have shown strong advantage when dealing with this type of problem. Making use of this feature, a fluid-structure interaction (FSI) model has been built to simulate the water entry problem by using two meshless methods as fluid and solid solver, respectively. After verifying the weakly compressible smoothed particle hydrodynamics (WCSPH) method through the entry of a rigid body, the water entry problems of elastomer with low and high speeds have been studied using the newly proposed WCSPH and smooth point interpolation method (SPIM) coupled method (WCSPH-SPIM). The calculation results show that the deformation of key points and the change of pressure with time are in good agreement with those of experiment or semi analytical solution, which verifies the efficiency of the proposed method on the simulation of water entry.

关键词

弱可压光滑粒子水动力法 / 光滑点插值方法 / 流固耦合 / 入水

Key words

Weakly Compressible Smoothed Particle Hydrodynamics / Smoothed Point Interpolation Method / Fluid-Structure Interaction / Water- Entry

引用本文

导出引用
施书文1,张桂勇1,2,3,王双强1,胡泰安1. 基于WCSPH-SPIM流固耦合模型的弹性体入水模拟[J]. 振动与冲击, 2020, 39(18): 103-108
SHI Shuwen1,ZHANG Guiyong1,2,3,WANG Shuangqiang1,HU Taian1. Numerical simulation of the water entry of an elastomer by using the WCSPH-SPIM coupled method[J]. Journal of Vibration and Shock, 2020, 39(18): 103-108

参考文献

[1] 卢炽华, 何友声. 二维弹性结构入水冲击工程中的流固耦合效应[J]. 力学学报, 2000, 32(2):129-140.
LU Chi-hua, HE You-sheng. Fluid-solid coupling effect of two-dimensional elastic structure in water impact engineering[J]. Acta Mechanica Sinica, 2000, 32(2):129-140.
[2] NOH B W F . CEL: A time dependent two space-dimensional, coupled Eulerian Lagrangian code[C]// Methods of Computational Physics. 1964.
[3] SHIN Y S , CHISUM J E . Modeling and Simulation of Underwater Shock Problems Using a Coupled Lagrangian-Eulerian Analysis Approach[J]. Shock and Vibration, 1997, 4(1):1-10.
[4] KOSHIZUKA S , OKA Y . Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid[J]. Nuclear Science and Engineering, 1996, 123(3):421-434.
[5] LEE E S , MOULINEC C , XU R , et al. Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method[J]. Journal of Computational Physics, 2008, 227(18):8417-8436.
[6] SHADLOO M S , ZAINALI A , YILDIZ M , et al. A robust weakly compressible SPH method and its comparison with an incompressible SPH[J]. International Journal for Numerical Methods in Engineering, 2012, 89(8):939-956.
[7] 陈臻. SPH算法改进及在晃荡与入水中的应用[D]. 2014, 大连理工大学.
CHEN Zhen. Improving SPH Methodology with Its Application to Sloshing and Water Entry[D].2014,Dalian University of Technology.
[8] 沈雁鸣,何琨,陈坚强,袁先旭.SPH统一算法对自由流体冲击弹性结构体问题模拟[J].振动与冲击,2015,34(16):60-65.
SHEN Yan-ming, HE Kun, CHEN Jian-qiang, YUAN Xian-xu. Numerical simulation of free surface flow impacting elastic structure with SPH uniform method[J]. Journal of Vibration and Shock, 2015,34(16):60-65.
[9] 许庆新,沈荣瀛,周海亭.SPH方法在剪切式碰撞能量吸收器中的应用[J].振动与冲击,2007(09):108-111+174.
XU Qing-xin, SHEN Rong-ying,ZHOU Hai-ting. Applying sph method to shearing energy absorbers[J]. Journal of Vibration and Shock,2007, 26( 9) : 108-111+174.
[10] 胡廷勋,胡德安.含预制孔容器内爆问题的FEM-SPH耦合算法模拟[J].振动与冲击,2018,37(03):210-216.
HU Tin-xun, HU De-an. Simulation for dynamic response of a vessel with a preformed hole under internal explosion using FEM-SPH coupled algorithm [J]. Journal of Vibration and Shock, 2018,37(03):210-216.
[11] FOUREY G, OGER G, LE TOUZÉD, et al. Violent fluid-structure interaction simulations using a coupled SPH/FEM method[C]//IOP conference series: materials science and engineering. IOP Publishing, 2010, 10(1): 012041.
[12] KHAYYER A, GOTOH H, PARK J C, et al. An enhanced fully Lagrangian coupled MPS-based solver for fluid-structure interactions[J]. 土木学会論文集 B2 (海岸工学), 2015, 71(2): I_883-I_888.
[13] FALAHATY H, KHAYYER A, GOTOH H. A Coupled Incompressible SPH-Hamiltonian SPH for Fluid-Structure Interactions[C]//The 28th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2018.
[14] ZHANG G, WANG S, SUI Z, et al. Coupling of SPH with smoothed point interpolation method for violent fluid-structure interaction problems[J]. Engineering Analysis with Boundary Elements, 2019, 103: 1-10.
[15] LIU G R, ZHANG G Y. A normed G space and weakened weak (W2) formulation of a cell-based smoothed point interpolation method[J].    International Journal of Computational Methods, 2009, 6(01): 147-179.
[16] LIU G R, ZHANG G Y. Smoothed point interpolation methods: G space theory and weakened weak forms[M].  World Scientific, 2013.
[17] LIU G R. Smoothed particle hydrodynamics: a meshfree particle method[M]. World Scientific, 2003.
[18] MONAGHAN J J. Smoothed particle hydrodynamics[J]. Annual review of astronomy and astrophysics, 1992, 30(1): 543-574.
[19] MONAGHAN J J. Simulating free surface flows with SPH[J]. Journal of computational physics, 1994, 110(2): 399-406.
[20] GONG K, SHAO S, LIU H, et al. Two-phase SPH simulation of fluid–structure interactions[J]. Journal of Fluids and Structures, 2016, 65: 155-179.
[21] VIOLEAU D, ROGERS B D. Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future[J]. Journal of Hydraulic Research, 2016, 54(1): 1-26.
[22] 鲁欢. 基于光滑点插值法的船舶结构动力分析[D].2017,大连理工大学.
LU Huan. Dynamic analyses of ship structures using the smoothed point interpolation method[D].2017, Dalian University of Technology.
[23] ZHAO R, FALTINSEN O, AARSNES J. Water entry of arbitrary two-dimensional sections with and without flow separation[C] // Proceedings of the 21st symposium on naval hydrodynamics. Trondheim, Norway, National Academy Press, Washington, DC, USA, 1996: 408-423.
[24] STENIUS I, ROSÉN A, BATTLEY M, et al. Experimental hydroelastic characterization of slamming loaded marine panels[J]. Ocean Engineering, 2013, 74(Complete):1-15.
[25] SCOLAN Y M. Hydroelastic behaviour of a conical shell impacting on a quiescent-free surface of an incompressible liquid [J]. Journal of Sound and Vibration, 2004, 277(1-2): 163-203.
[26] OGER G, GUICHER P-M, JACQUIN E, et al. Simulations of Hydro-Elastic Impacts Using a parallel SPH model[C]//The Nineteenth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2010.20(03):1-9.

PDF(1556 KB)

Accesses

Citation

Detail

段落导航
相关文章

/