冲击载荷下多胞元薄壁结构的动态压溃行为研究

白江畔1,张新春1,沈振峰1,吴鹤翔2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (18) : 145-152.

PDF(1942 KB)
PDF(1942 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (18) : 145-152.
论文

冲击载荷下多胞元薄壁结构的动态压溃行为研究

  • 白江畔1,张新春1,沈振峰1,吴鹤翔2
作者信息 +

Dynamic crushing behaviors of multi-cell thin-walled structures under out-of-plane impact

  • BAI Jiangpan1,ZHANG Xinchun1,SHEN Zhenfeng1,WU Hexiang2
Author information +
文章历史 +

摘要

为了提高薄壁结构的动态承载能力和能量吸收特性,基于弯曲主导型和拉伸主导型两类能量吸收结构的优点,本文构建了多胞元薄壁结构模型。利用显式动力有限元方法,研究了不同冲击载荷下多胞元薄壁结构的动态压溃响应和比能量吸收能力。研究结果表明,除了冲击速度,多胞元薄壁结构的动态压溃行为还受到肋板间夹角和冲击角度的影响。在相同相对密度和冲击速度下,多胞元薄壁结构的动态承载能力明显高于空心薄壁圆管。随着肋板间夹角的增大,多胞元薄壁结构的动态承载特性和比能量吸收能力明显提高,冲击载荷效率也相应增加。需要指出的是,当肋板间夹角增大到45º时,比吸能变化不再明显,试件具有较好的冲击载荷一致性。

Abstract

 In order to improve the dynamic bearing capacity and energy absorption characteristics of thin-walled structures, combined with the advantages of bending-dominant and tension-dominant structures, a kind of multi-cell thin-walled structure model was established in this paper. The dynamic collapse responses and specific energy absorption abilities of these multi-cell thin-wall structures were numerically investigated under different impact velocities by means of the explicit dynamic finite element analysis (EDFEA). The results showed that except for the impact velocity, the dynamic collapse behaviors of the multi-cell thin-wall tubes were also affected by the ribbed angle and the impacting angle. Under the conditions that the relative density and impact velocity were all the same, the dynamic bearing capacity of the multi-cell thin-wall tube was obviously higher than that of the empty tube. With the increase of the ribbed angles, the dynamic bearing characteristics and specific energy absorption abilities of the multi-cell tubes were improved obviously, and the impacting efficiency was also increased correspondingly. It should be noted that when the ribbed angle was greater than or equal to 45º, the variation of the specific energy absorption was no longer distinct. Moreover, the multi-cell circular tubes have the better crushing load uniformity.

关键词

冲击动力学 / 多胞元圆管 / 肋板夹角 / 能量吸收 / 冲击载荷一致性

Key words

impact dynamics / multi-cell circular tube / ribbed angle / energy absorption / crushing load uniformity

引用本文

导出引用
白江畔1,张新春1,沈振峰1,吴鹤翔2. 冲击载荷下多胞元薄壁结构的动态压溃行为研究[J]. 振动与冲击, 2020, 39(18): 145-152
BAI Jiangpan1,ZHANG Xinchun1,SHEN Zhenfeng1,WU Hexiang2. Dynamic crushing behaviors of multi-cell thin-walled structures under out-of-plane impact[J]. Journal of Vibration and Shock, 2020, 39(18): 145-152

参考文献

[1] Nia A A, Parsapour M. Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections[J]. Thin-Walled Structures, 2014, 74: 155-165.
[2] 李鸿, 鲍荣浩, 余同希. 薄壁圆环与刚性壁的碰撞和回弹[J]. 振动与冲击, 2019, 11(38): 211-218.
LI Hong, BAO Rong-hao, YU Tong-xi. A thin-walled ring impacting a rigid wall and its rebound[J]. Journal of Vibration and Shock, 2019, 11(38): 211-218.
[3] Liu H C, Chen L M, Du B, et al. Flatwise compression property of hierarchical thermoplastic composite square lattice[J]. Composite Structures, 2019, 210: 118-133.
[4] 张秧聪, 许平, 彭勇, 等. 高速列车前端多胞吸能结构的耐撞性优化 [J]. 振动与冲击, 2017, 12(36): 31-36.
ZHANG Yang-cong, XU Ping, PENG Yong, et al. Crashworthiness optimization of high-speed train front multi-cell energy- absorbing structures[J]. Journal of Vibration and Shock, 2017, 12(36): 31-36.
[5] Chen L M, Zhang J, Du B, et al. Dynamic crushing behavior and energy absorption of graded lattice cylindrical structure under axial impact load[J]. Thin-Walled Structures, 2018, 127: 333-343.
[6] Wu H X, Liu Y, Zhang X C. In-plane crushing behavior and energy absorption design of composite honeycombs[J]. Acta Mechanica Sinica, 2018, 34: 1108-1123.
[7] Zhang X C, An L Q, Ding H M, et al. Influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson’s ratio[J]. Journal of Sandwich Structures and Materials, 2015, 17(1): 26-55.
[8] Luo Y H, Fan H L. Energy absorbing ability of rectangular self-similar multi-cell sandwich walled tubular structures[J]. Thin-Walled Structures, 2018, 124: 88-97.
[9] 王春华, 安达, 韩冲, 等. 冲击地压新型加肋板圆管式吸能防冲构件的仿真与试验[J]. 振动与冲击, 2019, 11(38): 203-210.
WANG Chun-hua, AN Da, HAN Chong, et al. Simulation and tests for new tubular type energy-absorbing and anti-impact members with stiffened plate under rock burst[J]. Journal of Vibration and Shock, 2019, 11(38): 203-210.
[10] Lu G X, Yu T X. Energy absorption of structures and materials[M]. Cambridge: CRC Press, Wood head Publishing Limited, 2003.
[11] 王仁, 韩铭宝, 黄筑平, 等. 受轴向冲击的圆柱壳塑性动力屈曲实验研究[J]. 力学学报, 1983, 19(5): 509-514.
WANG Ren, HAN Ming-bao, HUANG Zhu-ping, et al. Dynamic plastic buckling of cylindrical shell under axial impact-an experimental study[J]. Chinese Journal of Theoretical and Applied Mechanics, 1983, 19(5): 509-514.
[12] Galib D A, Limam A. Experimental and numerical investigation of static and dynamic axial crushing of circular aluminum tubes[J]. Thin-Walled Structures, 2004, 24: 1103-1137.
[13] Xiang Y F, Yu T X, Yang L M. Comparative analysis of energy absorption capacity of polygonal tubes, multi-cell tubes and honeycombs by utilizing key performance indicators[J]. Materials & Design, 2016, 89: 689-696.

PDF(1942 KB)

Accesses

Citation

Detail

段落导航
相关文章

/