滚石冲击棚洞垫层的动力响应分析多采用数值模拟手段,缺乏物理模型试验验证。为此,以山区棚洞结构为原型,搭建滚石冲击棚洞结构试验平台,开展不同坠落高度下不同垫层厚度及密度的冲击试验,并建立对应的数值模型。进一步通过与试验结果比对,验证数值模型的可靠性,在此基础上开展滚石冲击棚洞垫层动力响应数值计算分析,结果表明:松散砂土垫层比密实砂土垫层具有更好的耗能效果;增大垫层厚度能够延长冲击持续时间,有效降低滚石冲击力,但随着厚度不断增加,其缓冲能力的提升程度减缓;通过对Hertz接触理论、日本公式、动力有限元三种方法比较,发现前两种方法的计算结果明显偏大,偏于保守。研究成果可为棚洞结构砂土垫层的设计提供理论与技术支持。
Abstract
The dynamic process analysis of the rock-fall impact to rock-shed cushion is mostly based on numerical simulation and lacks model test verification. Therefore, based on the prototype of rock-shed structures, the test platform of the rock-shed under rock-fall impact was built. The impact test of different cushion thicknesses and densities under different fall heights was carried out, and the corresponding numerical model was established. The reliability of the numerical model was verified by comparison with the experimental results. And the dynamic response analysis of the cushion was carried out. The results show that the loose sandy cushion has better energy absorption efficiency. Increasing the thickness of the cushion can prolong the impact duration and effectively reduce the impact force. However, as the thickness increasing, the improvement of cushioning effect is slowed down. Furthermore, by comparing the Hertz contact theory, the Japanese formula, and the dynamic finite element method, the calculation results of the first two methods are obviously larger. The research results can provide theoretical and technical support for the design of sandy cushion of rock-shed.
关键词
滚石 /
棚洞 /
砂土垫层 /
物理模型试验 /
数值模拟 /
动力响应
{{custom_keyword}} /
Key words
Rock-fall /
Rock shed /
Sandy soil cushion /
Physical modelling experiment /
Numerical model /
Dynamic response
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张路青,杨志法,许兵. 滚石与滚石灾害[J]. 工程地质学报,2004, 12(3): 225-231.
ZHANG Lu-qing, YANG Zhi-fa, XU Bing. Rock falls and rock fall hazards[J]. Journal of Engineering Geology, 2004, 12(3): 225-231.
[2] 裴向军,刘洋,王东坡. 滚石冲击棚洞砂土垫层耗能缓冲机理研究[J]. 工程科学与技术,2016, 48(1): 15-22.
PEI Xiang-jun, LIU Yang, WANG Dong-po. Study on the energy dissipation of sandy soil cushions on the rock-shed under rockfall impact load[J]. Journal of Sichuan University: Engineering Science Edition, 2016, 48(1): 15-22.
[3] 王静峰,赵鹏,袁松,等. 复合垫层钢棚洞抵抗落石冲击性能研究[J]. 土木工程学报,2018, 51(增2): 7-13.
WANG Jing-feng, ZHAO Peng, YUAN Song,et al. Numerical study on impact resistance of steel shed gallerywith composite cushion[J]. China Civil Engineering Journal, 2018, 51(Supp2): 7-13.
[4] 何思明,李新坡,吴永. 滚石冲击荷载作用下土体屈服特性研究[J]. 岩石力学与工程学报,2008, 27(增1): 2973-2977.
HE Si-ming, LI Xin-po, WU Yong. Research on yield property of soil under rock-fall impact[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(Supp1): 2973-2977.
[5] 袁进科,黄润秋,裴向军. 滚石冲击力测试研究[J]. 岩土力学,2014, 35(1): 48-54.
YUAN Jin-ke, HUANG Run-qiu, PEI Xiang-jun. Test reasearch on rockfall impact force[J]. Rock and Soil Mechanics, 2014, 35(1): 48-54.
[6] Kristian Schellenberg, Thomas Vogel. A dynamic design method for rockfall protection galleries[J]. Structural Engineering International, 2009, 19(3): 321-326.
[7] 叶四桥,陈洪凯,许江. 落石运动模式与运动特征现场试验研究[J]. 土木建筑与环境工程,2011, 33(2): 18-23.
YE Si-qiao, CHEN Hong-kai, XU jiang. Rockfalls movement mode and movement features by field tests[J]. Journal of Civil, Architectural & Environmental Engineering, 2011, 33(2): 18-23.
[8] 章广成,唐辉明,向欣. 冲击地面过程中落石特征参量的理论分析[J]. 岩石力学与工程学报,2012, 31(增1): 2839-2846.
ZHANG Guang-cheng, TANG Hui-ming, XIANG Xin. Characteristic parameters theoretical analysis of rockfall impact on ground[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(Supp1): 2839-2846.
[9] 闫帅星,何思明,李新坡. 滚石冲击作用下钢筋混凝土棚洞板动力学响应及冲切损伤评估研究[J]. 兰州大学学报(自然科学版),2019, 55(01): 64-72.
YAN Shuai-xing, HE Si-ming, LI Xin-po. Dynamic responses and punching damage assessment of a reinforced concrete slab impacted by rock-falls[J]. Journal of Lanzhou University(Natural Sciences), 2019, 55(01): 64-72.
[10] 章广成,向欣,唐辉明. 落石碰撞恢复系数的现场试验与数值计算[J]. 岩石力学与工程学报,2011, 30(06): 1266-1272.
ZHANG Guang-cheng, XIANG Xin, TANG Hui-ming. Field test and numerical calculation of restitution coefficient of rockfall collsion[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(06): 1266-1272.
[11] 程鹏,李伟,翟敏刚,等. 双层泡沫铝夹芯板抗滚石冲击结构性能优化研究[J]. 振动与冲击,2018, 37(05): 85-91.
CHENG Peng, LI Wei, QU Min-gang,et al. Structure performance optimization of double-layer aluminum foam sandwich panels under rockfalls impact[J]. Journal of Vibration and Shock, 2018, 37(05): 85-91.
[12] 章广成,唐辉明,吕庆,等. 斜坡落石研究[M]. 北京: 科学出版社,2016.
ZHANG Guang-cheng, TANG Hui-ming, LU Qing,et al. The study of slope rockfall[M]. Beijing: Science Press, 2016.
[13] C Zhu, D Wang, X Xia,et al. The effects of gravel cushion particle size and thickness on the coefficient of restitution in rockfall impacts[J]. Natural Hazards & Earth System Science, 2018, 18(6):1811-1823.
[14] Samson Degago, R. Ebeltoft, Steinar Nordal. Effect of rock fall geometries impacting soil cushion: a numerical procedure[C]. The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), 2008, 4517-4524.
[15] 王东坡,何思明,吴永,等. 滚石防护棚洞EPS垫层结构缓冲作用研究[J]. 振动与冲击,2014, 33(04): 199-214.
WANG Dong-po, HE Si-ming, WU Yong,et al. Cushioning effect of rock sheds with EPS cushion on rock-falls action[J]. Journal of Vibration and Shock, 2014, 33(04): 199-214.
[16] 向波,何思明,庄卫林,等. 滚石冲击荷载下垫层材料的动力响应研究[J]. 公路交通科技,2015, 32(01): 45-49.
XIANG Bo, HE Si-ming,et al. Study on dynamic response of cushion materials under rockfall impact load[J]. Journal of Highway and Transportation Research and Development, 2015, 32(01): 45-49.
[17] 杨其新,关宝树. 落石冲击力计算方法的试验研究[J]. 铁道学报,1996, 18(01): 101-106.
YANG Qi-xin, GUAN Bao-shu. Test and research on calculating method of falling stone impulsive force[J]. Journal of the China Railway Society, 1996, 18(01): 101-106.
[18] 陈洪凯,唐红梅,叶四桥,等. 危岩防治原理[M]. 北京: 地震出版社,2006.
CHEN Hong-kai, TANG Hong-mei, YE Si-qiao,et al. The principle of perilous rock's prevention and cure[M]. Beijing: Earthquake Press, 2006.
[19] 王东坡,何思明,欧阳朝军,等. 滚石冲击荷载下棚洞钢筋混凝土板动力响应研究[J]. 岩土力学,2013, 34(3): 881-886.
WANG Dong-po, HE Si-ming, OUYANG Chao-jun,et al. Study of dynamic response of shed reinforced concrete slab to impact load of rock-fall[J]. Rock and Soil Mechanics, 2013, 34(3): 881-886.
[20] Robin Olsson. Impact response of orthotropic composite plates predicted from a one-parameter differential equation[J]. AIAA Journal, 1992, 30(6): 1587-1596.
[21] Robin Olsson. Analytical model for delamination growth during small mass impact on plates[J]. International Journal of Solids and Structures, 2010, 47(21): 2884-2892.
[22] S Kawahara, T Muro. Effects of dry density and thickness of sandy soil on impact response due to rockfall[J]. Journal of Terramechanics, 2006, 43(3): 329-340.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}