C/SiC箱型结构的热模态试验研究

于开平1,郑博文1,陈晓岚2,李昕2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (18) : 209-214.

PDF(1202 KB)
PDF(1202 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (18) : 209-214.
论文

C/SiC箱型结构的热模态试验研究

  • 于开平1,郑博文1,陈晓岚2,李昕2
作者信息 +

Thermal modal test of a C/SiC box structure

  • YU Kaiping1,ZHENG Bowen1,CHEN Xiaolan2,LI Xin2
Author information +
文章历史 +

摘要

飞行器速度随着科学技术的发展不断提高,导致飞行器面临着极其严酷的高温环境,因此在地面上的热模态试验具有重要意义。作为具有应用前景的一种结构,箱型结构具有重要的研究价值。论文以箱型结构的C/SiC典型构型件为研究对象,对其在高温环境中的振动特性进行了研究。结合现有的试验技术,论文提供了一套热模态试验的方案,给出了C/SiC典型构型件在高温环境中的模态频率和模态振型。其优点在于能够最大程度的保证试验件的独立完整性,不会在激励和测量的过程中产生附加刚度、附加质量等影响。希望论文的研究为箱型结构在高温环境中的模态研究提供参考。

Abstract

As the speed of the aircraft increasing with the development of science and technology, the aircraft faces an extremely harsh high-temperature environment. Therefore, the thermal modal test on the ground is of great significance. As a structure with application prospects, the box structure has important research value. In this paper, the vibration characteristics of a C/SiC typical component, which is a box-type structure, in the high-temperature environment were studied. Combined with the existing test technology, this paper provides a set of thermal modal test schemes and gives the modal frequency and modal shapes of C/SiC typical component in the high-temperature environment. The advantage of this method is that there are no additional stiffness and additional quality generated during the excitation and measurement process. The research in this paper provides a reference for the modal study of box-type structures in the high-temperature environment.

关键词

C/SiC / 箱型结构 / 高温环境 / 模态试验

Key words

C/SiC / box structure / high temperature environment / modal test

引用本文

导出引用
于开平1,郑博文1,陈晓岚2,李昕2. C/SiC箱型结构的热模态试验研究[J]. 振动与冲击, 2020, 39(18): 209-214
YU Kaiping1,ZHENG Bowen1,CHEN Xiaolan2,LI Xin2. Thermal modal test of a C/SiC box structure[J]. Journal of Vibration and Shock, 2020, 39(18): 209-214

参考文献

[1] McNamara J J, Friedmann P P. Aeroelastic and aerothermoelastic analysis in hypersonic flow: past, present, and future[J]. AIAA journal, 2011, 49(6): 1089-1122.
[2] 蒋持平, 柴慧, 严鹏. 近空间高超声速飞行器防热隔热与热力耦合研究进展[J]. 力学与实践, 2011, 33(1): 1-9.
JIANG C P, CHAI H, YAN P. Advances in thermal protection of near space hypersonic flying vehicles and related researches of thermo-mechanical coupling[J]. Mechanics in Engineering, 2011, 33(1):1-9(in Chinese).
[3] Vosteen L F, Fuller K E. Behavior of a cantilever plate under rapid-heating conditions[J]. NASA Technical Reports Server ,1955.
[4] Vosteen L F, McWithey R R, Thomson R G. Effect of transient heating on vibration frequencies of some simple wing structures : NACA-TN-4054[R].Langley :National Advisory Committee for Aeronautics ,1957.
[5] Mcwhithey R R. Effects of Transient Heating on the Vibration Frequencies of a Prototype of the X-15 Wing[M]. National Aernautics and Space Administration, 1960.
[6] Kehoe M W, Snyder H T. Thermoelastic vibration test techniques[C]// 9th Conference International Modal Analysis Conference .1991.
[7] Snyder H T, Kehoe M W. Determination of the effects of heating on modal characteristics of an aluminum plate with application to hypersonic vehicles : NASA-TM-4274 [R]. Edwards: NASA Dryden Flight Research Facility ,1991.
[8] Kehoe M W, Deaton V C. Correlation of analytical and experimental hot structure vibration results: NASA-TM-104269 [R]. Edwards : NASA Dryden Flight Research Facility ,1993.
[9] Zhang X, Yu K, Bai Y, et al. Thermal vibration characteristics of fiber-reinforced mullite sandwich structure with ceramic foams core[J]. Composite Structures, 2015, 131: 99-106.
[10] Bai Y, Yu K, Zhao J, et al. Experimental and simulation investigation of temperature effects on modal characteristics of composite honeycomb structure[J]. Composite Structures, 2018, 201: 816-827.
[11] Geng Q, Li H, Li Y. Dynamic and acoustic response of a clamped rectangular plate in thermal environments: Experiment and numerical simulation[J]. The Journal of the Acoustical Society of America, 2014, 135(5): 2674-2682.
[12] 苏华昌, 骞永博, 李增文, 等. 舵面热模态试验技术研究[D]. 2011.
SU C H, QIAN Y B, LI Z W, et al. The study of rudder thermo-modal test technique[J]. Structure & Environment Engineering, 2011, 38(5):18-24(in Chinese).
[13] 麻连净, 蔡骏文. 导弹舵面热模态试验激振方法研究[J]. 战术导弹技术, 2013 (06): 20-025.
MA L J, CAI J W. Study of rudder thermo-modal test excitation method[J]. Tactical Missile Technology, 2013(6): 20-25 (in Chinese).
[14] 刘浩, 李晓东, 杨文岐, 等. 考虑气动加热的翼面结构热模态试验方法研究[J]. 振动与冲击, 2015, 34(13): 101-108.
LIU H, LI X D, YANG W Q, et al. Thermal modal test method for a wing structure considering aerodynamic heating[J]. Journal of Vibration and Shock, 2015, 34(13):101-108(in Chinese).
[15] 刘浩, 李晓东, 杨文岐, 等. 随机激励下受热翼面的模态频率特性试验研究[J]. 实验力学, 2015, 30(6): 731-740.
LIU H, LI X D, YANG W Q, et al. Experiment study of modal frequency characteristics of heated wing surface under random excitation condition[J]. Journal of Experimental Mechanics, 2015, 30(6):731-740(in Chinese).
[16] 刘浩, 李晓东, 杨文岐, 等. 高速飞行器翼面结构热振动试验的 TARMA 模型方法[J]. 航空学报, 2015, 36(7): 2225-2235.
LIU H, LI X D, YANG W Q, et al. Investigation of thermal vibration test on wing structure of high speed flight vehicle using TARMA model method[J]. Acta Aeronautica et Astronautica Sinica, 2015,36(7):2225-2235(in Chinese).
[17] 吴大方, 赵寿根, 潘兵, 等. 高速巡航导弹翼面结构热-振联合试验研究[J]. 航空学报, 2012,33 (9): 1633-1642.
WU D F, ZHAO S G, PAN B, et al. Research on thermal-vibration joint test for wing structure of high-speed cruise missile [J]. Acta Aeronautica et Astronautica Sinica, , 2012,33 (9): 1633-1642.
[18] 吴大方, 王岳武, 蒲颖, 等. 高超声速飞行器复合材料翼面结构 1100℃ 高温环境下的热模态试验[J]. 复合材料学报, 2015, 32(2): 323-331.
WU D F, WANG Y W, PU Y, et al. Experimental investigation of thermal modal of composite wing structure in high-temperature environments up to 1100℃ for hypersonic aircraft[J]. Acta Meteriae Composite Sinica, 2015,32(2):323-331(in Chinese).
[19] 吴大方, 王岳武, 商兰, 等. 1200℃ 高温环境下板结构热模态试验研究与数值模拟[J]. 航空学报, 2016, 37(6): 1861-1875.
WU D F, WANG Y W, SHANG L, et al. Test research and numerical simulation on thermal modal of plate structure in 1200℃ high-temperature environments[J]. Acta Aeronautica et Astronautica Sinica, 2016,37(6):1861-1875(in Chinese).
[20] 于开平, 白云鹤, 赵锐, 等. 高温环境下结构模态试验技术[J]. 力学与实践, 2018, 40(1): 1-12.
Yu K P, Bai Y H, Zhao R, et al. Advance of experimental technologies for structural modal test in high temperature environments. Mechanics in Engineering, 2018, 40(1): 1-12(in Chinese).
[21] 唐晓峰,何振威,常洪振,等.轴承支撑的舵面热模态试验及支撑刚度辨识[J].航空学报, 2019, 40: 222617.
TANG X F, HE Z W, CHANG H Z, et al. Thermo-modal test on an axle bearing supported rudder and identification of its supporting stiffness[J]. Acta Aeronautica et Astronautica Sinica,2018,40:222617(in Chinese).
[22] Bai Y, Yu K, Zhao R, et al. Impact Series Shaker Excitation Approach for Structural Modal Testing in Thermal Environments[J]. Experimental Techniques, 2018, 42(4): 429-438.
[23] Mohammadali M, Ahmadian H. Improvement in modal testing measurements by modeling and identification of shaker–stinger–structure interactions[J]. Experimental Techniques, 2016, 40(1): 49-57.

PDF(1202 KB)

Accesses

Citation

Detail

段落导航
相关文章

/