舰用燃气轮机支撑结构的抗冲击性一直深受关注。在整机试验难以进行的条件下,开展支撑结构的部件强化冲击试验十分有必要。以某舰用燃气轮机后支撑结构为研究对象,首先利用局部分析法分析了后支撑结构的边界条件及载荷特性,考虑实际部件试验的可行性,建立了后支撑结构的缩比试验模型;然后以相似理论为理论指导,推导出部件原结构与缩比试验模型的冲击响应对应关系;最后开展了缩比试验模型的冲击试验,并完成了缩比试验模型试验结果、数值模拟结果与原结构数值模拟结果的冲击响应等效性分析。结果表明,所建立的缩比试验模型能够反映原结构的冲击响应特性,后支撑结构的转接座连接处是抗冲击的薄弱部位。
Abstract
The impact resistance of marine gas turbine support structures has been receiving much attention. When the test of the whole gas turbine is difficult to complete, the strengthened impact test of the components of support structures were carried out is very necessary. This paper takes the rear support structure of a large marine gas turbine as the research object. Firstly, the boundary conditions and load characteristics of the rear support structures were analyzed by using local analysis method, considering the feasibility of the actual component test, a scale test model of the rear support was established. Secondly, the relationship between the original structure of the component and the impact response model is derived based on the theory of similarity. Finally, the impact test of scale test model was carried out, and the equivalent analysis of the impact response of the scaled test model test results, numerical simulation results and the original structure numerical simulation results. The results show that the established scale test model can reflect the impact response characteristics of the original structure, and the joint of the rear support structure is the weak part of the impact resistance.
关键词
水下爆炸 /
冲击环境 /
燃气轮机 /
缩比试验模型 /
冲击响应
{{custom_keyword}} /
Key words
underwater explosion;shock environment /
gas turbine /
scale test model /
shock resistance performance
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 汪玉,华宏星.舰艇现代冲击理论及应用[M].北京:科学出版社,2005.
[2] Jiang Guoyan, Jin Hui. Science &Technology Review[J].
Science & Technology Review ,2009,27(9): 87-91.
[3] 张磊,汪玉,温肇东,等.舰载设备冲击试验系统研制现状和发展趋势[J].科技导报,2009,1(7):96-101.
ZHANG Lei, WANG Yu, WEN Zhaodong, et al. Progress and trend of shock test system for warship equipment[J]. Science and technology guidance. 2009,1(7): 96-101.
[4] Schrader C G. The Navy Large Floating Shock Platform, Part 1: Physical Description and Capacities, Shock and Vibration Bulletin 1974, 44: 11- 12.
[5] 王军. 浮动冲击平台冲击动力特性研究[D].哈尔滨:哈尔滨工程大学,2015.
WANG Jun. Research on the impact Dynamic Characteristics of the floating shock platform[D].Harbin: Harbin engineering university, 2015.
[6] Pao L Y, Lau M A. Robust Input Shape r Control Design for Parameter Variations in Flexible Structures [J]. Journal of Dynamic Systems, Measurement, and Control, 2000, 122 (1):63-70.
[7] Paul G. Jones, Steven L. Carmichael. Auxiliary turbine generator set isolation system design for us naval vessel[J]. Copenhagen, Denmark. 2012(129):1-7.
[8] 韩祖舜,赵维杰,许克勤,等.舰用燃气轮机抗冲击计算模型及实验研究[J].振动与冲击,1992,12(1):50-55.
HAN Zushun, ZHAO Weijie, XU Keqin, et al. Calculation model and experimental study on shock resistance of marine gas turbine[J]. Journal of vibration and shock. 1992, 12(1): 50-55.
[9] 万强,吴新跃,谢最伟.某燃气轮机高压转子—涡轮抗冲击性能研究[J].机械设计与制造,2012(2):184-189.
WAN Qiang, WU Xinyue, XIE Zuiwei. Research on anti-shock dynamical characteristics of the high pressure rotor-turbo of a gas turbine[J]. Mechanical design and manufacture. 2012(2): 184-189.
[10] Xie Zuiwei, He Shaohua, Wu Xinyue. Anti-shock Optimization of a Certain Gas Turbine Foundation by DDAM. Advanced Materials Research. 2010(9):376-380.
[11] 尹家录,王相平,赵祥敏,等.舰船燃气轮机支撑系统结构设计及抗冲击计算分析[J].航空发动机. 2011(37):12-18.
YIN Jialu, WANG Xiangping, ZHAO Xiangmin, et al. Structure design and anti-shock analysis of the bracing system for marine gas turbine[J]. Aeroplane engine. 2011(37):12-18.
[12] FRG Ministry of Defense Equipment Technology and Procurement. Code for ship construction-impact safety: BV0430/85[S]. Koblenz: FRG Ministry of Defense Equipment Technology and Procurement, 1985(in Chinese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}