实际的地震记录表明,地震作用是一个明显的非平稳随机过程。在强震作用下,结构会出现滞回非线性,甚至表现出退化特性。考虑此,采用可以模拟结构退化及捏拢效应的改进Bouc-Wen模型来模拟地震作用下结构的滞回行为。基于等价线性化法,建立了非平稳激励下改进Bouc-Wen系统随机响应的求解过程,同时采用Monte Carlo法验证其准确性,并分析了激励强度、退化程度、捏拢效应等参数的影响。最后以一木排架结构为例,分析了木排架结构在非平稳地震动作用下的随机响应。结果表明:激励强度越大,系统位移均方根和累积滞回耗能均值越大;退化效应使系统的位移均方根明显增加,但对累积滞回耗能均值影响不大;捏拢效应显著增加了系统的位移均方根,但降低了系统的累积滞回耗能均值。另一方面,计算结果显示退化和捏拢效应使得响应偏离高斯分布的程度有所增加,进而使得等价线性化法的计算误差有一定的增加。
Abstract
Actual seismic records show that seismic action is an obviously non-stationary random process. Under the action of strong earthquake, the structure will exhibit hysteretic behavior, and even degradation behavior. An improved Bouc-Wen model, which can simulate structural degradation and pinching effect, is adopted to simulate the behaviors of structures under earthquake action. With equivalent linearization method, random response of the improved Bouc-Wen system under non-stationary excitation is analyzed. The solutions are further verified with Monte Carlo method. Results present that seismic intensity, structural degradation and pinching effect significantly influence the structural response and accumulated hysteretic energy dissipation. Finally, a wooden bent structure under non-stationary seismic excitation is taken as an example. The results indicate that the mean of the accumulated hysteretic energy dissipation and the RMS(root mean squared)displacement increases with the rise of earthquake intensity. Degradations of strength and stiffness obviously increase the RMS displacement of the system, but influence the hysteretic energy dissipation slightly. Pinching effect significantly increases the RMS displacement of the system, and reduces the mean cumulative hysteretic energy dissipation. On the other hand, the agreement between approximate solution and simulated ones seems not good if degrading or pinching effect exist, but still satisfies engineering requirements.
关键词
非平稳响应 /
Bouc-Wen模型;捏拢效应;退化行为;随机过程
{{custom_keyword}} /
Key words
non-stationary response /
Bouc-Wen model /
pinching effect /
degradation behavior /
random process
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] AMIN M, ANG A H S. Nonstationary Stochastic model of earthquake motion [J]. Journal of Engineering Mechanics, ASCE, 1968, 94(EM2): 559-583.
[2] BABER T T, NOORI M N. Modeling general hysteresis behavior and random vibration application [J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1986, 108(4): 411-420.
[3] BABER T T, NOORI M N. Random vibration of degrading pinching systems [J]. Journal of Engineering Mechanics. ASCE, 1985, 111(8): 1010-1026.
[4] JIN X L, HUANG Z L, LEUNG A Y T. Nonstationary seismic responses of structure with nonlinear stiffness subject to modulated Kanai-Tajimi excitation [J]. Earthquake Engineering & Structural Dynamics, 2012, 41(2): 197-210.
[5] TUBALDI E, KOUGIOUMTZOGLOU I A. Nonstationary stochastic response of structural systems equipped with nonlinear viscous dampers under seismic excitation [J]. Earthquake Engineering & Structural Dynamics, 2015, 44(1): 121-138.
[6] 胡晓斌, 江卫波. 自复位单自由度体系随机地震响应分析[J]. 振动与冲击, 2016, 35(16): 152-157.
HU Xiaobin, JIANG Weibo. A random seismic response analysis of self-centering SDOF systems [J]. Journal of Vibration and Shock, 2016, 35(16): 152-157.
[7] 李创第, 黄天立, 李暾, 等. 隔震结构非线性随机地震响应分析的复模态法 [J]. 振动与冲击, 2004, 23(1): 21-26.
LI Chuangdi, HUANG Tianli, LI Tun, et al. Complex modal method for analysis of non-linear randaom earthquake response of structures with base isolation [J]. Journal of Vibration and Shock, 2004, 23(1): 21-26.
[8] 孙臻, 王曙光, 王赟玉, 等. 高层隔震结构非平稳随机地震响应与动力可靠度分析 [J]. 建筑结构学报, 2011, 32(12): 210-216.
SUN Zhen, WANG Shuguang, WANG Yunyu, et al. Non-stationary random response and dynamic reliability of high-rise seismic isolated structure [J]. Journal of Building Structures, 2011, 32(12): 210-216.
[9] PARK Y J, WEN Y K, ANG A H S. Random vibration of hysteretic system under Bi-directional ground motion [J]. Earthquake Engineering & Structural Dynamics, 1986, 14(4): 543-557.
[10] JANGID R S. Response of SDOF system to non-stationary earthquake excitation [J]. Earthquake Engineering & Structural Dynamics, 2004, 33(15): 1417-1428.
[11] 谢启芳, 赵鸿铁, 薛建阳, 等. 中国古建筑木结构榫卯节点加固的试验研究 [J]. 土木工程学报, 2008, 41(1): 28-34.
XIE Qifang, ZHAO Hongtie, XUE Jianyang, et al. An experimental study on the strengthening of mortise-tenon joints in ancient Chinese wooden buildings [J]. China Civil Engineering Journal, 2008, 41(1): 28-34.
[12] 欧进萍, 牛荻涛. 设计用随机地震动的模型及其参数确 [J]地震工程与工程振动, 1991(3):45-54.
OU Jinping, NIU Ditao. Design uses stochastic ground motion model and its parameters to determine [J]. Earthquake Engineering and Engineering Vibration, 1991(3): 45-54.
[13] 刘俊, 陈林聪, 孙建桥. 随机激励下滞迟系统的稳态响应闭合解 [J]. 力学学报, 2017, 49(03): 685-692.
LIU Jun, CHEN Lincong, SUN Jianqiao. The closed-form solution of steady state response of hysteretic system under stochastic excitation [J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(03): 685-692.
[14] 余波, 宁超列. 工程结构非弹性地震动力反应分析的BWBN模型 [J]. 工程力学, 2017(S1): 265-275.
YU Bo, NING Chaolie. Recent progress on BNBW model for structural inelastic seismic response analysis [J]. Engineering Mechanics, 2017(S1): 265-275.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}