基于等效简化模型的柔性吊装多体系统动力响应分析

颜世军1,彭剑2,任中俊1,王世鸣1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (18) : 255-261.

PDF(1852 KB)
PDF(1852 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (18) : 255-261.
论文

基于等效简化模型的柔性吊装多体系统动力响应分析

  • 颜世军1,彭剑2,任中俊1,王世鸣1
作者信息 +

Dynamics of a flexible multi-body hoisting system based on an equivalent simplified model

  • YAN Shijun1,PENG Jian2,REN Zhongjun1,WANG Shiming1
Author information +
文章历史 +

摘要

针对大型吊装多体系统在回转作业时的刚柔耦合动力学行为,开展了简化模型构建和动态响应分析。利用等效弹簧质量阻尼系统描述吊臂臂头弹性振动,利用空间悬吊系统模拟吊物空间摆动。以浮动坐标系对系统各部件开展运动学描述,基于拉格朗日方程,采用递推列式推导并建立了吊装多体系统的等效简化分析模型,并给出相应数值计算方法。针对某大型轮式起重机开展了仿真分析,通过与实测数据对比分析表明,简化模型能较好地评价柔性吊装多体系统的非线性动力学行为。对柔性臂架振动频谱分析表明,在轻载长绳状态下,吊臂振动幅值受吊物偏摆激励和自身惯性激励的共同影响,但在重载短绳状态下,响应幅值主要取决于吊物偏摆激励,且系统刚柔耦合效应明显增强。

Abstract

 Rigid-flexible dynamical characteristics of a flexible multi-body hoisting system are investigated during its slewing, by using a simplified equivalent mathematical model. In this study, the boom head vibrations are modeled by an equivalent spring mass damper system, while the sway motions of the payload are described by a spatial suspend system. Based on the Lagrange equation, a simplified mathematic formulation is derived, by using the recursive formulation, with the floating frames to describe the motions of bodies. Dynamics of a real large scale truck crane is analyzed with the proposed formulation and computational method. Comparisons between the simulation and test results show that this method is very effective and convenient for truck crane’s slewing simulation. The results of spectrum analysis reveal the dynamic behavior that, with the weight increase of the payload and length decrease of the rope, the contribution of the payload sway to the boom vibration increases, however, the influence of the self-excitation causing by inertial force is reduced, besides, under heavy load and short rope condition, the coupling effect between the boom vibration and payload sway becomes significant.

关键词

吊装系统 / 动力学模型 / 多体动力学 / 响应分析

Key words

hoisting system / dynamical model / multi-body dynamics / responses analysis

引用本文

导出引用
颜世军1,彭剑2,任中俊1,王世鸣1. 基于等效简化模型的柔性吊装多体系统动力响应分析[J]. 振动与冲击, 2020, 39(18): 255-261
YAN Shijun1,PENG Jian2,REN Zhongjun1,WANG Shiming1. Dynamics of a flexible multi-body hoisting system based on an equivalent simplified model[J]. Journal of Vibration and Shock, 2020, 39(18): 255-261

参考文献


[1] MORI Y, TAGAWA Y. Vibration controller for overhead cranes considering limited horizontal acceleration [J]. Control Engineering  Practice, 2018, 81:256-263.
[2] MOHAMED H, RAAFAT S, MOSTAFA S. A Hybrid Partial Feedback Linearization and Deadbeat Control Scheme for a Nonlinear Gantry Crane [J]. Journal of the Franklin Institute, 2018, 355(14): 6286-6299.
[3] NEUPERT J, ARNOLD E, SCHNEIDER K. Tracking and anti-sway control for boom cranes. Control Engineering Practice, 2010, 18(1):31-44.
[4] CHEN H, FANG Y, SUN N. An adaptive tracking control method with swing suppression for 4-DOF tower crane systems [J]. Mechanical systems and signal processing, 2019, 123:436-454.
[5] ELLERMANN K, KREUZER E. Nonlinear Dynamics in the Motion of Floating Cranes [J]. Multibody System Dynamics, 2003, 9(4):377-387.
[6] 孙友刚, 董达善, 强海燕等. 海上浮式集装箱起重机的小车位置跟踪和吊物消摆控制研究[J]. 振动与冲击, 2018, 37(11): 207-215.
SUN Yougang, DONG Dashan, QIANG Haiyan, etc. Crab position tracking and lifting weight anti-sway control for an off-shore container crane on sea [J]. Journal of Vibration and Shock, 2018, 37(11): 207-215.
[7] Yuzhe Q, Yongchun F, Biao L. Adaptive robust tracking control for an offshore ship-mounted crane subject to unmatched sea wave disturbances [J]. Mechanical Systems and Signal Processing, 2019, 114:556-570.
[8] JU F, CHOO Y S, CUI F S. Dynamic response of tower crane induced by the pendulum motion of the payload[J]. International Journal of Solids and Structures, 2006, 43(2):376-389.
[9] 北京起重运输机械研究所.起重机设计规范:GB/T 3811-2008[S]. 北京:中国标准出版社,2008 .
Beijing Material Handling Research Institute. Design rules for cranes: GB/T3811- 2008[S].  Beijing:Standards Press of China,2008.
[10] JERMAN B, PODRZAJ P, KRAMAR J. An investigation of slewing-crane dynamics during slewing motion-development and verification of a mathematical model[J]. International Journal of Mechanical Sciences, 2004, 46(5):729-750.
[11] KILISCLAN S, BALKAN T, IDER S K. Tipping loads of mobile cranes with flexible booms [J] .  Journal of sound & vibration ,1999,223(4) :645-657.
[12] PARK K P,CHA J H,LEE K Y. Dynamic factor analysis considering elastic boom effects in heavy lifting operations[J]. Ocean engineering, 2011, 38(10):1100-1113.
[13] SUN G , LIU J . Dynamic responses of hydraulic crane during luffing motion[J]. Mechanism & Machine Theory, 2006, 41(11):1273-1288.
[14] 王刚,齐朝晖,孔宪超. 含机构位移起重机主副臂组合臂架结构几何非线性分析[J]. 工程力学,2015(7):210-218.  WANG Gang,QI Zhaohui ,KONG Xianchao.  Geometric  nonlinear  analysis  for crane main and sub-boom structures with mechanism displacement[J]. Engineering mechanics,2015(7):210-218.
[15] 颜世军, 彭剑, 刘泽等. 大型柔性起重臂系统回转吊装刚柔耦合动力学模型[J]. 振动与冲击, 2018. 37(5): 175-179.
YAN Shijun, PENG Jian, LIU Ze, etc. Rigid-flexible coupled dynamic model of a huge-type truck crane’s boom system during its slewing hoisting [J]. Journal of Vibration and Shock, 2018, 37(5): 175-179.
[16] 夏拥军,缪谦.计及二阶效应的门座起重机变幅工况动力学分析[J]. 计算力学学报,2010,27(4):711-715. 
XIA Yongjun,MIU Qian. Dynamic analysis of port crane in case of modifying amplitude with second-order effect [J]. Chinese Journal of Computational Mechanics,2010,27(4):711-715.
 
 

PDF(1852 KB)

589

Accesses

0

Citation

Detail

段落导航
相关文章

/