支承非对称对双转子系统动力特性的影响规律

王杰1,左彦飞1,江志农2,冯坤2,胡明辉3,张文海3

振动与冲击 ›› 2020, Vol. 39 ›› Issue (18) : 27-33.

PDF(2225 KB)
PDF(2225 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (18) : 27-33.
论文

支承非对称对双转子系统动力特性的影响规律

  • 王杰1,左彦飞1,江志农2,冯坤2,胡明辉3,张文海3
作者信息 +

Effect of asymmetrical supports on the dynamic characteristics of a dual-rotor system

  • WANG Jie1,ZUO Yanfei1,JIANG Zhinong2,FENG Kun2,HU Minghui3,ZHANG Wenhai3
Author information +
文章历史 +

摘要

支承刚度非对称广泛存在于转子支承系统中,然而非对称支承对工程中双转子系统动力特性的复杂影响规律尚不明确。为此,以典型发动机同向转动的双转子支承系统为研究对象,根据该发动机薄壁柔性机匣支承的特点,提出支承非对称系数指标,研究了支承非对称存在与否及其变化对双转子支承系统临界转速、稳态不平衡响应、进动方向及进动轨迹的影响。研究发现,支承非对称的存在会导致与之相关的振型所对应的正进动临界转速增大、反进动临界转速减小;部分支点在反进动临界转速附近出现响应峰值并且伴随着进动平面内振动相位的变化;转子进动更为复杂,同一个转子上正反进动同时出现,转子特定节点的进动轨迹也会随转速产生较为复杂的变化;进一步研究发现,非对称系数的增大会使得出现反进动的转速和位置区域总体增大,但在特定转速或特定位置反进动区域也可能变小。所得规律可为发动机双转子系统复杂支承条件下的动力学设计及特殊振动现象产生原因阐释提供参考。

Abstract

The asymmetry of support stiffness widely exists in the rotor support system. However, the complex influence of asymmetric support on the dynamic characteristics of the dual-rotor system in engineering is not clear. For this reason, the dual-rotor support system with typical engine rotating in the same direction is taken as the research object. According to the characteristics of the thin-walled flexible casing support of the engine, the index of support asymmetry coefficient is proposed, and the effects of the existence of support asymmetry and its variation on the critical speed, steady-state unbalance response, whirling direction and whirling trajectory of the dual-rotor support system are studied. It is found that the asymmetry of the support will lead to the increase of the forward critical speed and the decrease of the backward critical speed corresponding to the relevant modes. The response peak of some pivots appears near the critical speed of whirling and it is accompanied by the change of vibration phase in the whirling plane. The whirling of the rotor is more complex. The forward and backward whirling occur simultaneously on the same rotor, and the whirling trajectory of the specific node of the rotor will change more complex with the rotational speed. Further study shows that the increase of the asymmetric coefficient will result in an overall increase in the speed and position regions where the backward whirling occurs, but the area of the backward whirling may also decrease in the specific speed or position. The obtained influence can provide reference for the dynamic design of engine dual-rotor system under complex support conditions and the explanation of the special vibration phenomena.

关键词

双转子 / 非对称支承 / 不平衡响应 / 反进动 / 进动轨迹

Key words

Dual-Rotor / Asymmetrical support / Unbalance response / Backward whirling / Whirling trajectory

引用本文

导出引用
王杰1,左彦飞1,江志农2,冯坤2,胡明辉3,张文海3. 支承非对称对双转子系统动力特性的影响规律[J]. 振动与冲击, 2020, 39(18): 27-33
WANG Jie1,ZUO Yanfei1,JIANG Zhinong2,FENG Kun2,HU Minghui3,ZHANG Wenhai3. Effect of asymmetrical supports on the dynamic characteristics of a dual-rotor system[J]. Journal of Vibration and Shock, 2020, 39(18): 27-33

参考文献

[1] Smith D. M. The Motion of a Rotor Carried by a Flexible Shaft in Flexible Bearings[J]. Proceedings of the Royal Society of London, 1933, 142(846): 92-118
[2] Biezeno C. B. Translat. Engineering dynamics[M]. Blackie, 1954
[3] Downham E. Theory of Shaft Whirling No. 5 - The Influence of Plain Bearings on Shaft Whirling[J]. Engineer, 1957: 10
[4] 方之楚, 骆振黄. 各向异性支承中的单盘转子过临界点时的瞬态响应[J]. 固体力学学报, 1987(04): 321-330
Fang Zhichu, Luo Zhenhuang. Transient Response of a Sin-gle Disk Rotor in Anisotropic Bearings at the Critical Point[J]. Chinese Journal of Solid Mechanics, 1987(04): 321-330
[5] Lee C. W. Vibration Analysis of Rotors[M]. Kluwer Academic Publishers, 1993: 511-511
[6] Wang Shuai, Wang Yu, Y. Zi. A 3D Finite Element-Based Model Order Reduction Rotor-Bearing Systems[J]. Journal of Sound & Vibration, 2015, 359: 116-135
[7] Nelson H. D. The Dynamics of Rotor Bearing Systems, Using Finite Elements[J]. Transactions of the American Society Mechanical Engineers Journal of Engineering for Industry. 1976, 98(2): 593
[8] Nonami K. Response in Passing Through Critical Speed of Arbitrarily Distributed Flexible Rotor System : Part 2,Case with Gyroscopic Effect[J]. Bulletin of Jsme. 2008, 2 (217): 1205-1212
[9] Joh C. Y., Lee C. W. Use of dFRFs for Diagnosis of Asymmetric/Anisotropic Properties in Rotor-Bearing System[J]. Journal of Vibration & Acoustics, 1996, 118 (1): 26-29
[10] Han D. J. Generalized Modal Balancing for Non-Isotropic Rotor Systems[J]. Mechanical Systems & Signal Processing. 2007, 21(5): 2137-2160
[11] Fei Z. X, Tong S. G, Wei C. Investigation of the Dynamic Characteristics of a Dual-Rotor System and its start-up Simulation Based on Finite Element Method[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2013, 14 (4): 268-280
[12] 张大义, 刘烨辉, 梁智超, 等. 航空发动机双转子系统临界转速求解方法[J]. 推进技术, 2015 (02): 292-298
Zhang Dayi, Liu Yehui, Liang Zhichao, et al. Method for Solving Critical Speed of Aeroengine Dual-Rotor System[J]. Propulsion Technology, 2015 (02): 292-298
[13] Ferraris G., Maisonneuve V., Lalanne M. Prediction of the dynamic behavior of non-symmetrical coaxial co-or counter-rotating rotors[J]. Journal of Sound & Vibration. 1996, 195 (4):649-666
[14] 左彦飞. 航空发动机整机系统结构振动分析[D]. 北京: 北京航空航天大学, 2016.
Zuo Yanfei. Structural dynamic analysis of the whole aero-engine system[D]. Beijing: Beihang University, 2016.
[15] Ma W. M, Wang J. J. 3D Solid Finite Element Modeling and Rotordynamics of Large Rotating Machines: Application to an Industrial Turbo Engine[J]. Advanced Materials Research, 2012, 591-593:1879-1885

PDF(2225 KB)

Accesses

Citation

Detail

段落导航
相关文章

/