Chaotic dynamics of a bi-stable energy harvesting system with asymmetric potential well characteristics
LI Haitao1,2,DING Hu2,3,CHEN Liqun2,3,4
Author information+
1.Department of Mechanics, School of Science, North University of China, Taiyuan 030051, China;
2.Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China;
3.Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China;
4.Department of Mechanics, Shanghai University, Shanghai 200444, China
In this paper, the homoclinic bifurcation for bi-stable energy harvesting system with asymmetric potential well is investigated. Firstly, the nonlinear dynamic model of the bi-stable energy harvesting system with gravitational parameters is established. Then an analytic expression of the homoclinic orbit is obtained by analyzing the asymmetrical potential well of the governing equation. Melnikov method is used to obtain the threshold of homoclinic bifurcation, and the criteria are verified by numerical method. When the excitation intensity is lower than the critical threshold predicted by Melnikov method, the response is restricted the single asymmetric potential well; as the excitation intensity is larger than the critical threshold, the bifurcation will trigger the double well response. The results show that the gravity parameter and the damping effect have an influence on the bifurcation threshold curve. The threshold value of bi-stable energy harvesting system with asymmetric potential well is higher than that of the energy harvesting system with symmetric potential well. Increasing gravity parameters will suppress the generation of chaotic response, leading to the gradual evolution from the coexistence of chaotic and periodic response to the coexistence of periodic response. The results of this study will expand the scope of nonlinear dynamics and provide a strategy for chaos response control.
LI Haitao1,2,DING Hu2,3,CHEN Liqun2,3,4.
Chaotic dynamics of a bi-stable energy harvesting system with asymmetric potential well characteristics[J]. Journal of Vibration and Shock, 2020, 39(18): 54-59
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Priya S, Inman D J. Energy harvesting technologies[M]. New York: Springer, 2009.
[2] Erturk A, Inman D J. Piezoelectric energy harvesting[M]. John Wiley & Sons, 2011.
[3] 徐振龙, 单小彪, 谢涛. 宽频压电振动俘能器的研究现状综述[J]. 振动与冲击, 2018, 37(8): 190-199.
XU Zhen-Long, SHAN Xiao-Biao, XIE Tao. A review of broadband piezoelectric vibration energy harvester[J]. Journal of Vibration and Shock, 2018, 37(8): 190-199.
[4] Tang L, Yang Y, Soh C K. Toward broadband vibration-based energy harvesting[J]. Journal of intelligent material systems and structures, 2010, 21(18): 1867-1897.
[5] Cottone F, Vocca H, Gammaitoni L. Nonlinear energy harvesting[J]. Physical Review Letters, 2009, 102(8): 080601.
[6] Erturk A, Hoffmann J, Inman D J. A piezomagnetoelastic structure for broadband vibration energy harvesting[J]. Applied Physics Letters, 2009, 94(25): 254102.
[7] 吴义鹏, 季宏丽, 裘进浩, 等. 共振频率可调式非线性压电振动能量收集器[J]. 振动与冲击, 2017, 36(5): 12-16.
WU Yi-Peng, JI Hong-Li, QIU Jin-Hao et.al. A nonlinear piezo- electric vibration energy harvesting device with tunable resonance frequencies[J]. Journal of Vibration and Shock, 2017, 36(5): 12-16.
[8] 王祖尧, 丁虎, 陈立群. 两自由度磁力悬浮非线性振动能量采集研究[J]. 振动与冲击, 2016, 35(16): 55-58.
WANG Zu-Yao, DING Hu, CHEN Li-Qun. Nonlinear oscillations of a two-degree-of-freedom energy harvester of magnetic levitation[J]. Journal of Vibration and Shock, 2016, 35(16): 55-58.
[9] Harne R L, Wang K W. A review of the recent research on vibration energy harvesting via bistable systems[J]. Smart materials and structures, 2013, 22(2): 023001.
[10] 彭利明, 王永, 黄志龙. 浅球壳型双稳振动能量收集器件结构优化设计[J]. 振动与冲击, 2015, 34(14): 21-26.
PENG Li-Ming, WANG Yong, HUANG Zhi-Long. Structural optimum design of shallow spherical shell-type bistable vibration energy harvester[J]. Journal of Vibration and Shock, 2015, 34(14): 21-26.
[11] 李海涛, 秦卫阳, 邓王蒸, 等. 复合式双稳能量采集系统动力学及相干共振[J]. 振动与冲击, 2016, 35(14): 119-124.
LI Hai-Tao, QIN Wei-Yang, DENG Wang-Zheng, et. al. Dynamics and coherence resonance of a hybrid energy harvesting system[J]. Journal of Vibration and Shock, 2016, 35(14): 119-124.
[12] 吴娟娟, 冷永刚, 乔海, 等. 窄带随机激励双稳压电悬臂梁响应机制与能量采集研究[J]. 物理学报, 2018, 67(21): 210502-210502.
WU Juan-Juan, LENG Yong-Gang, QIAO Hai, et. al. Mechanism of a nonlinear bistable piezoelectric cantilever beam under narrow-band random excitations and its energy harvesting [J]. Acta Physica Sinica, 2018, 67(21): 210502-210502.
[13] Masana R, Daqaq M F. Energy harvesting in the super- harmonic frequency region of a twin-well oscillator[J]. Journal of Applied Physics, 2012, 111(4): 044501.
[14] 孙舒, 曹树谦. 双稳态压电悬臂梁发电系统的动力学建模及分析[J]. 物理学报, 2012, 61(21): 210505-210505.
SUN Shu, CAO Shu-Qian. Dynamic modeling and analysis of a bistable piezoelectric cantilever power generation system[J]. 2012, 61(21): 210505-210505.
[15] Zhou S, Cao J, Erturk A, Lin J. Enhanced broadband piezoelectric energy harvesting using rotatable magnets[J]. Applied Physics Letters, 2013, 102(17): 173901.
[16] Zhou S, Zuo L. Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 61: 271-284.
[17] Tian R, Cao Q, Yang S. The codimension-two bifurcation for the recent proposed SD oscillator[J]. Nonlinear Dynamics, 2010, 59(1-2): 19-27
[18] Jiang W A, Chen L Q. Snap-through piezoelectric energy harvesting[J]. Journal of Sound and Vibration, 2014, 333(18): 4314-4325.
[19] Chen L Q, Li K. Equilibriums and their stabilities of the snap-through mechanism[J]. Archive of Applied Mechanics, 2016, 86(3): 403-410.
[20] Stanton S C, Mann B P, Owens B A. Melnikov theoretic methods for characterizing the dynamics of the bistable piezoelectric inertial generator in complex spectral environments[J]. Physica D: Nonlinear Phenomena, 2012, 241(6): 711-720.
[21] Li H, Qin W. Homoclinic bifurcation threshold of a bistable system for piezoelectric energy harvesting[J]. The European Physical Journal Applied Physics, 2015, 69(2): 20902.
[22] Tian R, Wu Q, Yang X, et.al. Chaotic threshold for the smooth- and-discontinuous oscillator under constant excitations[J]. The European Physical Journal Plus, 2013, 128(7): 80.
[23] Kwuimy C K, Nataraj C, Litak G. Melnikov’s criteria, parametric control of chaos, and stationary chaos occurrence in systems with asymmetric potential subjected to multiscale type excitation[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2011, 21(4): 043113.
[24] Litak G, Borowiec M. Oscillators with asymmetric single and double well potentials: transition to chaos revisited[J]. Acta Mechanica, 2006, 184(1-4): 47-59.