带有非对称势能阱特性的双稳态能量采集系统混沌动力学分析

李海涛1,2,丁虎2,3,陈立群2,3,4

振动与冲击 ›› 2020, Vol. 39 ›› Issue (18) : 54-59.

PDF(1582 KB)
PDF(1582 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (18) : 54-59.
论文

带有非对称势能阱特性的双稳态能量采集系统混沌动力学分析

  • 李海涛1,2,丁虎2,3,陈立群2,3,4
作者信息 +

Chaotic dynamics of a bi-stable energy harvesting system with asymmetric potential well characteristics

  • LI Haitao1,2,DING Hu2,3,CHEN Liqun2,3,4
Author information +
文章历史 +

摘要

本文针对带有非对称势能阱的双稳态能量采集系统开展混沌动力学研究。首先建立考虑重力因素影响的能量采集系统非线性动力学模型。针对动力学方程的非对称势能阱开展分析,得到同宿轨道的解析表达形式。通过Melnikov方法获得发生同宿分岔的阈值,并使用数值方法验证。结果表明当激励强度低于Melnikov理论预测的临界阈值时,响应限制在单个非对称的势能阱当中;当激励强度大于Melnikov理论预测的临界阈值时,同宿分岔将会引发双阱运动。重力参数和阻尼显著影响同宿分岔的阈值曲线,考虑重力参数影响所得到的阈值明显高于对称双阱能量采集系统的阈值。增加重力参数会抑制混沌响应的产生,导致系统从混沌-周期响应共存逐渐演化为周期-周期响应共存。此研究结果将拓展非线性动力学的研究范畴,为实现混沌响应的调控提供一种策略。

Abstract

In this paper, the homoclinic bifurcation for bi-stable energy harvesting system with asymmetric potential well is investigated. Firstly, the nonlinear dynamic model of the bi-stable energy harvesting system with gravitational parameters is established. Then an analytic expression of the homoclinic orbit is obtained by analyzing the asymmetrical potential well of the governing equation. Melnikov method is used to obtain the threshold of homoclinic bifurcation, and the criteria are verified by numerical method. When the excitation intensity is lower than the critical threshold predicted by Melnikov method, the response is restricted the single asymmetric potential well; as the excitation intensity is larger than the critical threshold, the bifurcation will trigger the double well response. The results show that the gravity parameter and the damping effect have an influence on the bifurcation threshold curve. The threshold value of bi-stable energy harvesting system with asymmetric potential well is higher than that of the energy harvesting system with symmetric potential well. Increasing gravity parameters will suppress the generation of chaotic response, leading to the gradual evolution from the coexistence of chaotic and periodic response to the coexistence of periodic response. The results of this study will expand the scope of nonlinear dynamics and provide a strategy for chaos response control.

关键词

非对称势能阱 / Melnikov方法 / 能量采集系统 / 同宿分岔 / 混沌动力学

引用本文

导出引用
李海涛1,2,丁虎2,3,陈立群2,3,4. 带有非对称势能阱特性的双稳态能量采集系统混沌动力学分析[J]. 振动与冲击, 2020, 39(18): 54-59
LI Haitao1,2,DING Hu2,3,CHEN Liqun2,3,4. Chaotic dynamics of a bi-stable energy harvesting system with asymmetric potential well characteristics[J]. Journal of Vibration and Shock, 2020, 39(18): 54-59

参考文献

[1] Priya S, Inman D J. Energy harvesting technologies[M]. New York: Springer, 2009.
[2] Erturk A, Inman D J. Piezoelectric energy harvesting[M]. John Wiley & Sons, 2011.
[3] 徐振龙, 单小彪, 谢涛. 宽频压电振动俘能器的研究现状综述[J]. 振动与冲击, 2018, 37(8): 190-199.
XU Zhen-Long, SHAN Xiao-Biao, XIE Tao. A review of broadband piezoelectric vibration energy harvester[J]. Journal of Vibration and Shock, 2018, 37(8): 190-199.
[4] Tang L, Yang Y, Soh C K. Toward broadband vibration-based energy harvesting[J]. Journal of intelligent material systems and structures, 2010, 21(18): 1867-1897.
[5] Cottone F, Vocca H, Gammaitoni L. Nonlinear energy harvesting[J]. Physical Review Letters, 2009, 102(8): 080601.
[6] Erturk A, Hoffmann J, Inman D J. A piezomagnetoelastic structure for broadband vibration energy harvesting[J]. Applied Physics Letters, 2009, 94(25): 254102.
[7] 吴义鹏, 季宏丽, 裘进浩, 等. 共振频率可调式非线性压电振动能量收集器[J]. 振动与冲击, 2017, 36(5): 12-16.
WU Yi-Peng, JI Hong-Li, QIU Jin-Hao et.al. A nonlinear piezo- electric vibration energy harvesting device with tunable resonance frequencies[J]. Journal of Vibration and Shock, 2017, 36(5): 12-16.
[8] 王祖尧, 丁虎, 陈立群. 两自由度磁力悬浮非线性振动能量采集研究[J]. 振动与冲击, 2016, 35(16): 55-58.
WANG Zu-Yao, DING Hu, CHEN Li-Qun. Nonlinear oscillations of a two-degree-of-freedom energy harvester of magnetic levitation[J]. Journal of Vibration and Shock, 2016, 35(16): 55-58.
[9] Harne R L, Wang K W. A review of the recent research on vibration energy harvesting via bistable systems[J]. Smart materials and structures, 2013, 22(2): 023001.
[10] 彭利明, 王永, 黄志龙. 浅球壳型双稳振动能量收集器件结构优化设计[J]. 振动与冲击, 2015, 34(14): 21-26.
PENG Li-Ming, WANG Yong, HUANG Zhi-Long. Structural optimum design of shallow spherical shell-type bistable vibration energy harvester[J]. Journal of Vibration and Shock, 2015, 34(14): 21-26.
[11] 李海涛, 秦卫阳, 邓王蒸, 等. 复合式双稳能量采集系统动力学及相干共振[J]. 振动与冲击, 2016, 35(14): 119-124.
LI Hai-Tao, QIN Wei-Yang, DENG Wang-Zheng, et. al. Dynamics and coherence resonance of a hybrid energy harvesting system[J]. Journal of Vibration and Shock, 2016, 35(14): 119-124.
[12] 吴娟娟, 冷永刚, 乔海, 等. 窄带随机激励双稳压电悬臂梁响应机制与能量采集研究[J]. 物理学报, 2018, 67(21): 210502-210502.
WU Juan-Juan, LENG Yong-Gang, QIAO Hai, et. al. Mechanism of a nonlinear bistable piezoelectric cantilever beam under narrow-band random excitations and its energy harvesting [J]. Acta Physica Sinica, 2018, 67(21): 210502-210502.
[13] Masana R, Daqaq M F. Energy harvesting in the super- harmonic frequency region of a twin-well oscillator[J]. Journal of Applied Physics, 2012, 111(4): 044501.
[14] 孙舒, 曹树谦. 双稳态压电悬臂梁发电系统的动力学建模及分析[J]. 物理学报, 2012, 61(21): 210505-210505.
SUN Shu, CAO Shu-Qian. Dynamic modeling and analysis of a bistable piezoelectric cantilever power generation system[J]. 2012, 61(21): 210505-210505.
[15] Zhou S, Cao J, Erturk A, Lin J. Enhanced broadband piezoelectric energy harvesting using rotatable magnets[J]. Applied Physics Letters, 2013, 102(17): 173901.
[16] Zhou S, Zuo L. Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 61: 271-284.
[17] Tian R, Cao Q, Yang S. The codimension-two bifurcation for the recent proposed SD oscillator[J]. Nonlinear Dynamics, 2010, 59(1-2): 19-27
[18] Jiang W A, Chen L Q. Snap-through piezoelectric energy harvesting[J]. Journal of Sound and Vibration, 2014, 333(18): 4314-4325.
[19] Chen L Q, Li K. Equilibriums and their stabilities of the snap-through mechanism[J]. Archive of Applied Mechanics, 2016, 86(3): 403-410.
[20] Stanton S C, Mann B P, Owens B A. Melnikov theoretic methods for characterizing the dynamics of the bistable piezoelectric inertial generator in complex spectral environments[J]. Physica D: Nonlinear Phenomena, 2012, 241(6): 711-720.
[21] Li H, Qin W. Homoclinic bifurcation threshold of a bistable system for piezoelectric energy harvesting[J]. The European Physical Journal Applied Physics, 2015, 69(2): 20902.
[22] Tian R, Wu Q, Yang X, et.al. Chaotic threshold for the smooth- and-discontinuous oscillator under constant excitations[J]. The European Physical Journal Plus, 2013, 128(7): 80.
[23] Kwuimy C K, Nataraj C, Litak G. Melnikov’s criteria, parametric control of chaos, and stationary chaos occurrence in systems with asymmetric potential subjected to multiscale type excitation[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2011, 21(4): 043113.
[24] Litak G, Borowiec M. Oscillators with asymmetric single and double well potentials: transition to chaos revisited[J]. Acta Mechanica, 2006, 184(1-4): 47-59.

PDF(1582 KB)

Accesses

Citation

Detail

段落导航
相关文章

/