为了降低最大峰值应力和维持良好的冲击载荷一致性,在内凹六边形蜂窝(CHH)的基础上,基于机械超材料的设计理念,提出了一种新型负泊松比内凹环形蜂窝(RCH)结构模型。利用显式动力有限元方法,研究了面内冲击载荷作用下胞元微结构对该内凹环形蜂窝材料的变形行为、动态冲击应力和能量吸收特性的影响。研究结果表明,除了冲击速度和相对密度,内凹环形蜂窝结构的冲击动力学响应还依赖于胞元微结构。在中低速冲击作用下,内凹环形蜂窝亦表现出明显的负泊松比效应;与传统内凹六边形蜂窝不同,在相同冲击速度下,内凹环形蜂窝的最大峰值应力明显降低,并且具有良好的冲击载荷一致性。基于一维冲击波理论,还给出了内凹环形蜂窝材料的动态平台应力经验公式,理论计算结果和有限元结果吻合较好。
Abstract
In order to reduce the maximum peak stress and maintain better load uniformity, a novel re-entrant circular honeycomb (RCH) model with negative Poisson's ratio (NPR) was proposed according to the concave hexagonal honeycomb (CHH) based on the design concept of mechanical metamaterials. Using explicit dynamic finite element analysis (DFEA), the influence of cell micro-structures on the deformation behaviors, dynamic impact strengths and energy absorption abilities of the re-entrant circular honeycombs was numerically studied under in-plane impact loading. Research results show that apart from the impact velocity and the relative density, the dynamic crushing properties of RCHs also depend upon the cell micro-structure parameters. Under low and moderate impact velocities, the RCHs show the remarkable negative Poisson's ratio effect of auxetic material. However, unlike the conventional concave hexagonal honeycombs, the maximum peak stresses of the RCHs decrease obviously at the same impact velocity. Moreover, it has good impact load uniformity. Based on the one-dimensional (1D) shock wave theory, the empirical formula of the dynamic plateau stress for RCH was given, and the theoretical results are in good agreement with the finite element (FE) model results.
关键词
负泊松比 /
内凹环形蜂窝 /
冲击响应 /
能量吸收 /
微结构
{{custom_keyword}} /
Key words
negative Poisson's ratio (NPR) /
re-entrant circular honeycomb /
impact response /
energy absorption /
micro-structure
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Lim T C. Auxetic materials and structures[M]. Singapore: Springer, 2015.
[2] Sun Y L, Li Q M. Dynamic compressive behaviour of cellular materials: a review of phenomenon, mechanism and modelling[J]. International Journal of Impact Engineering, 2018, 112: 74–115.
[3] 张新春,祝晓燕,李娜. 六韧带手性蜂窝结构的动力学响应特性研究[J]. 振动与冲击,2016,35(8):1–7.
ZHANG Xin-chun, ZHU Xiao-yan, LI Na. A study of the dynamic response characteristics of hexagonal chiral honeycombs[J]. Journal of Vibration and Shock, 2016, 35(8): 1–7.
[4] Zhang X C, An L Q, Ding H M, et al. The Influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative poisson's ratio[J]. Journal of Sandwich Structures and Materials, 2015, 17(1): 26–55.
[5] Liu W Y, Wang N L, Luo T, et al. In-plane dynamic crushing of re-entrant auxetic cellular structure[J]. Materials and Design, 2016, 100: 84–91.
[6] 邓小林,刘旺玉. 一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析[J]. 振动与冲击,2017,36(13):103–109.
DENG Xiao-lin, LIU Wang-yu. In-plane impact dynamic analysis for a sinusoidal curved honeycomb structure with negative poisson’s ratio[J]. Journal of Vibration and Shock, 2017, 36(13): 103–109.
[7] Qiao J X, Chen C Q. Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs[J]. International Journal of Impact Engineering, 2015, 83: 47–58.
[8] 韩会龙,张新春,王鹏. 负泊松比蜂窝材料的动力学响应及能量吸收特性[J]. 爆炸与冲击,2019,39(1): 013103.
HAN Hui-long, ZHANG Xin-chun, WANG Peng. Dynamic responses and energy absorption properties of honeycombs with negative poisson's ratio[J]. Explosion and Shock Waves, 2019, 39(1): 013103.
[9] 韩会龙,张新春. 星形节点周期性蜂窝结构的面内动力学响应特性研究. 振动与冲击,2017,36(23):223–231.
HAN Hui-long, ZHANG Xin-chun. In-plane dynamic impact response characteristics of periodic 4-point star-shaped honeycomb structures. Journal of Vibration and Shock, 2017, 36(23): 223–231.
[10] Hu L L, Zhou M Z, Deng H. Dynamic crushing response of auxetic honeycombs under large deformation: theoretical analysis and numerical simulation[J]. Thin-Walled Structures, 2018, 131: 373–384.
[11] Nasim M S, Etemadi E. Three dimensional modeling of warp and woof periodic auxetic cellular structure[J]. International Journal of Mechanical Sciences, 2018, 136: 475–481.
[12] Ingrole A, Hao A, Liang R. Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement[J]. Materials and Design, 2018, 117: 72–83.
[13] 卢子兴,武文博. 基于旋转三角形模型的负泊松比蜂窝材料面内动态压溃行为数值模拟[J]. 兵工学报,2018,39(1):153–160.
LU Zi-xing, WU Wen-bo. Numerical simulations for the in-plane dynamic crushing of honeycomb material with negative poisson's ratio based on rotating triangle model[J]. Acta Armamentarii, 2018, 39(1): 153–160.
[14] Wang H, Lu Z X, Yang Z Y, et al. In-plane dynamic crushing behaviors of a novel auxetic honeycomb with two plateau stress regions[J]. International Journal of Mechanical Sciences, 2019, 151: 746–759.
[15] Wu H X, Liu Y, Zhang X C. In-plane crushing behavior and energy absorption design of composite honeycombs[J]. Acta Mechanica Sinica, 2018, 34: 1108–1123.
[16] Zhang X C,An L Q,Ding H M.Dynamic crushing behavior and energy absorption of honeycombs with density gradient[J]. Journal of Sandwich Structures and Materials, 2014, 16(2): 125–147.
[17] 蒋伟,马华,王军,等. 基于环形蜂窝芯结构的负泊松比机械超材料[J]. 科学通报,2016,61(13):1421–1427.
JIANG Wei, MA Hua, WANG Jun, et al. Mechanical metamaterial with negative poisson’s ratio based on circular honeycomb core[J]. Chinese Science Bulletin, 2016, 61: 1421–1427.
[18] Ma Q, Cheng H Y, Jang K, et al. A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures[J]. Journal of the Mechanics and Physics of Solids, 2016, 90: 179–202.
[19] Qiu X M, Zhang J, Yu T X. Collapse of periodic planar lattices under uniaxial compression, part II: dynamic crushing based on finite element simulation[J]. International Journal of Impact Engineering, 2009, 36(10/11): 1231–1241.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}