基于标准正交判别投影的转子故障数据集降维方法

石明宽,赵荣珍

振动与冲击 ›› 2020, Vol. 39 ›› Issue (18) : 96-102.

PDF(1148 KB)
PDF(1148 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (18) : 96-102.
论文

基于标准正交判别投影的转子故障数据集降维方法

  • 石明宽,赵荣珍
作者信息 +

Dimension reduction of a rotor faults data set based on standard orthogonal discriminant projection

  • SHI Mingkuan,ZHAO Rongzhen
Author information +
文章历史 +

摘要

针对旋转机械智能决策技术的故障数据分类问题,提出一种基于标准正交判别投影(Standard Orthogonal Discriminant Projection,SODP)的转子故障数据集降维算法。该方法首先从时域、频域及时频域构造原始故障特征集,将振动信号转化为高维特征数据集,然后运用SODP选择出其中最能反映故障本质的敏感特征子集,最后将得到的低维特征子集输入到KNN分类器中进行故障模式辨识。用一个双跨度转子系统的振动信号集合进行验证,证明了该方法能够有效地提取出全局与局部判别信息,使故障类别之间的差异性变得更清晰, 相应地提高了故障模式识别准确率。研究表明该算法可为实际转子智能故障诊断提供参考。

Abstract

Aiming at the problem of fault data classification of rotating machinery intelligent decision-making technology, a dimensionality reduction algorithm of rotor fault data set based on Standard Orthogonal Discriminant Projection (SODP) was proposed. Firstly, the original fault feature set is constructed from time domain, frequency domain and time-frequency domain, and the vibration signal was transformed into a high-dimensional feature data set, and then IODP was used to select the subset sensitive feature that best reflect the nature of the fault. Finally, the Low-dimensional feature subsets were input into the KNN classifier for fault pattern identification. The vibration signal set of a double-span rotor system were used to verify the method. It was proved that the method can extract global and local discriminant information comprehensively, which makes the difference between fault categories clearer and corresponding fault pattern recognition accuracy rate improved. The research shows that the algorithm can provide reference for actual rotor fault diagnosis.

关键词

故障分类 / 转子故障数据集 / 正交判别投影 / 标准正交性约束 / K近邻分类器

Key words

Fault classification / rotor fault data set / orthogonal discriminant projection / standard orthogonality constraint;K-nearest neighbor (KNN) classifier

引用本文

导出引用
石明宽,赵荣珍. 基于标准正交判别投影的转子故障数据集降维方法[J]. 振动与冲击, 2020, 39(18): 96-102
SHI Mingkuan,ZHAO Rongzhen. Dimension reduction of a rotor faults data set based on standard orthogonal discriminant projection[J]. Journal of Vibration and Shock, 2020, 39(18): 96-102

参考文献

[1] Jiang F, Zhu Z, Li W, et al. Fault identification of rotor-bearing system based on ensemble empirical mode decomposition and self-zero space projection analysis[J]. Journal of Sound and Vibration, 2014, 333(14): 3321-3331.
[2] Lei Y, He Z, Zi Y. Application of an intelligent classification method to mechanical fault diagnosis[J]. Expert Systems with Applications, 2009, 36(6): 9941-9948.
[3] 黄宏臣, 韩振南, 张倩倩, 等. 基于拉普拉斯特征映射的滚动轴承故障识别[J]. 振动与冲击, 2015, 34(05): 128-134. Huang Hongchen, Han Zhennan, Zhang Qianqian, et al. Method of fault diagnosis for rolling bearings based on laplacian eigenmap[J]. Journal of Vibration and Shock, 2015, 34(05): 128-134.
[4] He X F,Yan S C,Hu Y X,et al. Face recognition using laplacianfaces[J]. IEEE Transactions on Pattern Analysis andMachine Intelligence, 2005, 27( 3): 328-340.
[5] Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
[6] Martinez A M, Kak A C. PCA versus LDA[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(2): 228-233.
[7] Cai D, He X F, Han J. Orthogonal laplacianfaces for face recognition[J]. IEEE Transactions on Image Process, 2006, 15(11): 3608-3614.
[8] Deng W, Hu J, Guo J, et al. Comments on "globally maximizing, locally minimizing: unsupervised discriminant projection with application to face and palm biometrics"[J]. IEEE Trans Pattern Anal Mach Intell, 2008, 30(8): 1503-1504.
[9] Yan S, Xu D, Zhang B, et al. Graph embedding and extension: a general framework for dimensionality reduction[J]. Pattern Analysis & Machine Intelligence IEEE. Transactions on, 2007, 29(1): 40-51.
[10] Yu W, Teng X, Liu C. Face recognition using discriminant locality preserving projections[J]. Image and Vision Computing, 2006, 24(3): 239-248.
[11] Li B, Wang C, Huang D S. Supervised feature extraction based on orthogonal discriminant projection[J]. Neurocomputing, 2009, 73(1): 191-196. 
[12] 张晓涛, 唐力伟, 王平, 等. 基于多尺度正交PCA-LPP流形学习算法的故障特征增强方法[J]. 振动与冲击, 2015, 34(13): 66-70.
Zhang Xiaotao, Tang Liwei, Wang Ping, et al. Fault feature enhancement method based on multiscale orthogonal PCA-LPP manifold learning algorithm[J]. Journal of Vibration and Shock, 2015, 34(13): 66-70.
[13] Zhang C, Zhang S. A supervised orthogonal discriminant projection for tumor classification using gene expression data[J]. Computers in Biology and Medicine, 2013, 43(5): 568-575.
[14] Wang S, Ding C, Hsu C H, et al. Dimensionality reduction via preserving local information[J]. Future Generation Computer Systems, 2018: S0167739X17319696.
[15] 李霁蒲, 赵荣珍. 近邻概率距离在旋转机械故障集分类中的应用方法[J]. 振击与冲击, 2018, 37(11): 48-54.
LI Jipu, Zhao Rongzhen. Application of neighbor probability distance of in classification of rotating machinery fault sets[J]. Journal of Vibration and Shock, 2018, 37(11): 48-54.
[16] 赵荣珍, 李超, 张优云. 中值与小波消噪集成的转子振动信号滤波方法研究[J]. 振动与冲击, 2005, 24(04): 74-77.
Zhao Rongzhen, Li Chao, Zhang Youyun. Filter design synthesizing median filtering and wavelet algorithm to de-noise vibration signal polluted by violent pulse noises[J]. Journal of Vibration and Shock, 2005, 24(04): 74-77.
[17] 苏祖强, 汤宝平, 姚金宝.基于敏感特征选择与流形学习维数约简的故障诊断[J].振动与冲击, 2014, 33(03):70-75.
SU Zuqiang, Tang Baoping, Yao Jinbao. Fault diagnosis method based on sensitive feature selection and manifold learning dimension reduction[J].Journal of Vibration and Shock, 2014, 33(03): 70-75.
[18] 赵孝礼, 赵荣珍. 全局与局部判别信息融合的转子故障数据集降维方法研究[J]. 自动化学报, 2017, 43(04): 560-567.
Zhao Xiaoli, Zhao Rongzhen. A method of dimension reduction of rotor faults data set based on fusion of global and local discriminant information[J]. Acta Automatica Sinica, 2017, 43(04): 560-567.

PDF(1148 KB)

3060

Accesses

0

Citation

Detail

段落导航
相关文章

/