为深入了解双吸离心泵内部非定常压力脉动特性,对一台双吸离心泵在0.6Qd、0.8Qd、1.0Qd和1.2Qd工况下的压力脉动特性进行了试验和数值模拟研究,得到了吸水室和蜗壳壁面上3个监测点的压力脉动时频域特性及泵内部压力脉动强度分布。对比试验和数值模拟的泵外特性和监测点的压力脉动功率谱密度,验证了数值模拟的准确性。结果表明:在设计工况和小流量工况下吸水室监测点处叶频是压力脉动的主频,在1.2Qd时主频转变为轴频,且轴频的幅值随流量变化较小;因吸水室顶部漩涡较多,采用SST k-ω模型进行数值模拟未能准确预测吸水室中的压力脉动。蜗壳上监测点的压力脉动主频为叶频,其振幅随流量的增加先减小后增大,由于蜗壳内压力脉动主要原因为叶轮和蜗壳的动静干涉作用,数值模拟可以准确预测蜗壳中的压力脉动。在小流量时蜗壳出口处监测点的压力脉动主频为轴频,在设计工况和大流量时为叶频,但由于数值模拟未考虑环境因素,使得其结果与试验有偏差。蜗壳中压力脉动强度随着流量增加先降低后变大,在设计工况最低,在设计流量和大流量工况下隔舌断面上压力脉动强度对称分布。
Abstract
In order to study deeply unsteady pressure fluctuation characteristics inside a double-suction centrifugal pump, numerical simulation and tests were conducted for the pump under multiple operating conditions to obtain pressure fluctuation characteristics in time and frequency domains at 3 monitoring points in suction chamber and volute wall and pressure fluctuation intensity distribution inside the pump. The pump characteristics and pressure pulsation power spectral density at monitoring points obtained in tests were compared with those obtained in numerical simulation to verify correctness of numerical simulation. Results showed that under designed operation condition and small flow rate one, blade frequency at the monitoring point in auction chamber is the dominant frequency of pressure fluctuation, while under 1.2Qd operation condition, the dominant frequency becomes shaft frequency, and amplitude of shaft frequency has smaller variation with varying of flow rate; due to more vortexes on top of suction chamber, numerical simulation with the SST k-ω model can’t predict pressure fluctuation inside suction chamber; duo to rotor-stator interaction between impeller and volute, the dominant frequency at the monitoring point on volute wall is blade frequency, its amplitude firstly decreases and then increases with increase in flow rate, numerical simulation can correctly predict pressure fluctuation inside volute; under small flow rate condition, the dominant frequency of pressure fluctuation at the monitoring point of volute outlet is shaft frequency, while under designed condition and large flow rate one, it is blade frequency, due to not considering environment factors, simulation results deviate from test ones; the pressure fluctuation intensity in volute firstly decreases and then increases with increase in flow rate; during the lowest design condition, the pressure fluctuation intensity on the pump’s tongue section is symmetrically distributed under designed flow rate and large flow rate conditions.
关键词
双吸离心泵 /
压力脉动 /
试验 /
数值模拟 /
功率谱密度 /
压力脉动强度
{{custom_keyword}} /
Key words
double-suction centrifugal pump /
pressure fluctuation /
test /
numerical simulation /
power spectral density;pressure fluctuation intensity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CHU S, DONG R, KATZ J. Relationship Between Unsteady Flow, Pressure Fluctuations, and Noise in a Centrifugal Pump—Part A: Use of PDV Data to Compute the Pressure Field [J]. Journal of Fluids Engineering-Transactions of the ASME, 1995, Vol.117(1): 24-29.
[2] CHU S, DONG R, KATZ J. Relationship Between Unsteady Flow, Pressure Fluctuations, and Noise in a Centrifugal Pump—Part B: Effects of Blade-Tongue Interactions [J]. Journal of Fluids Engineering-Transactions of the ASME, 1995, Vol.117(1): 30-35.
[3] Gonzalez J, Parrondo J, Santolaria C, et al. Steady and Unsteady Radial Forces for a Centrifugal Pump With Impeller to Tongue Gap Variation [J]. Journal of Fluids Engineering, 2006, 128(3):454-462.
[4] 司乔瑞,袁寿其,袁建平,等. 叶片与隔舌干涉对离心泵性能和压力脉动影响的数值研究[J]. 流体机械,2012,40(08):22-26.
SI Qiao-rui, YUAN Shou-qi, YUAN Jian-ping, et al. Effect of Interaction between Blade and Volute Tongue of Centrifugal Pumps on the Performance and Pressure Pulsation [J]. FLUID MACHNERY, 2012, 40(08): 22-26.
[5] M R Hodkiewicz, M P Norton. The effect of change in flow rate on the vibration of double-suction centrifugal pumps [J]. Proceedings of the Institution of Mechanical Engineers. Part E: Journal of Process Mechanical Engineering, 2002, Vol.216(1): 47-58.
[6] 姚志峰,王福军,肖若富,等. 离心泵压力脉动测试关键问题分析[J]. 排灌机械工程学报,2010,28(03):219-223.
Yao Zhifeng, Wang Fujun, Xiao Ruofu, et al. Key Issues in Pressure Fluctuation Experiments for Centrifugal Pumps[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28(03): 219-223.
[7] 姚志峰,王福军,肖若富,等. 双吸离心泵吸水室和压水室压力脉动特性试验研究[J]. 水利学报,2012,43(04):473-479.
Yao Zhifeng, Wang Fujun, Xiao Ruofu, et al. Experimental Investigation on Pressure Fluctuations in Suction Chamber and Volute of a Double-suction Centrifugal Pump[J]. SHUILI XUEBAO, 2012, 43(04): 473-479.
[8] Zhiyuan Wang, Zhongdong Qian, Jie Lu, et al. Effects of flow rate and rotational speed on pressure fluctuations in a double-suction centrifugal pump[J]. Energy, 2019,Vol.170: 212-227.
[9] Nagahara T, Inoue Y, Sato T, S Sakata, et al. Investigation of the flow field in a multistage pump by using LES[C]// Proceedings of 2005 ASME Fluids Engineering Division Summer Meeting, FEDSM2005, Houston, TX, United States, 2005: 1 476-1 487.
[10] Spence R, Amaral-Teixeira J. Investigation into pressure pulsations in a centrifugal pump using numerical methods supported by industrial tests[J]. Computers and Fluids, 2008, Vol.37: 690-704.
[11] Zhou P J, Wang F J, Yang M. Internal flow numerical simulation of double-suction centrifugal pump using DES model[C]// Proceedings of the 26th IAHR Symposium on Hydraulic Machinery and Systems, Beijing, China, 2012: 19-23.
[12] 王春林,罗波,夏勇,等. 双吸离心泵正反转工况流致振动噪声研究[J].振动与冲击,2017,36(07):248-254.
WANG Chunlin, LUO Bo, XIA Yong, et al. Flow-induced vibration and noise of a double-suction centrifugal pump under positive and negative rotating operation conditions[J]. JOURNAL OF VIBRATION AND SHOCK, 2017, 36(07), 248-254.
[13] 丛国辉,王福军.双吸离心泵隔舌区压力脉动特性分析[J].农业机械学报,2008(06):60-63+67.
Cong Guohui, Wang Fujun. Numerical Investigation of Unsteady Pressure Fluctuations near Volute Tongue in a Double-suction Centrifugal Pump[J]. Transactions of The Chinese Society of Agricultural Machinery, 2008(06): 60-63+67.
[14] 王家斌,陈佳,袁寿其,等. 双吸双蜗壳离心泵隔舌处的压力脉动特性[J].排灌机械工程学报,2016,34(04):283-289.
WANG Jiabin. CHEN Jia, YUAN Shouqi, et al. Pressure fluctuation near double volute tongue for double-suction centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(04): 283-289.
[15] 顾延东,袁寿其,裴吉,等. 泵叶轮出口宽度对蜗壳内压力脉动强度的影响[J]. 哈尔滨工程大学学报,2017,38(07):1023-1030.
GU Yandong, YUAN Shouqi, PEI Ji, et al.Effect of the outlet width of pump impeller on pressure fluctuation intensity in volute[J].Journal of Harbin Engineering University, 2017, 38(07):1023-1030.
[16] 王文杰,袁寿其,裴吉,张金凤,袁建平.时序效应对导叶式离心泵内部压力脉动影响的数值分析[J].机械工程学报,2015,51(04):185-192.
WANG Wenjie, YUAN Shouqi, PEI Ji, et al. Numerical Analysis of the Clocking Effect on the Pressure Fluctuation in the Centrifugal Pump with Vaned Diffuser[J]. JOURNAL OF MECHANICAL ENGINEERING, 2015,51(04):185-192.
[17] 关醒凡. 现代泵理论与设计[M]. 北京:中国宇航出版社,2011.
Guan Xingfan. Modern Pumps Theory and Design[M]. Beijing: China Astronautic Publishing House, 2011.
[18] 王松林,谭磊,王玉川. 离心泵瞬态空化流动及压力脉动特性[J]. 振动与冲击,2013,32(22):168-173.
WANG Song-lin, TAN Lei, WANG Yu-chuan. Characteristics of transient cavitation flow and pressure fluctuation for a centrifugal pump[J]. JOURNAL OF VIBRATION AND SHOCK, 2013, 32(22): 168-173.
[19] Atia E, Khalifa, Amro M. Al-Qutub, et al. Study of Pressure Fluctuations and Induced Vibration at Blade-Passing Frequencies of a Double Volute Pump[J]. Arabian Journal for Science and Engineering. Section A: Sciences, 2011, Vol.36(7): 1333-1345
[20] 袁寿其,袁建平,裴吉. 离心泵内部流动与运行节能[M]. 北京:科学出版社,2016.
[21] GB/T 27418-2017. 测量不确定度评定和表示[S]. 中华人民共和国国家质量监督检验检疫总局;中国国家标准化管理委员会,2017-12-29
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}