单-双联卡箍管路系统建模及动力学特性分析

柴清东1,付强 1,马辉1, 2,韩清凯1, 2,张大志3

振动与冲击 ›› 2020, Vol. 39 ›› Issue (19) : 114-120.

PDF(1635 KB)
PDF(1635 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (19) : 114-120.
论文

单-双联卡箍管路系统建模及动力学特性分析

  • 柴清东1,付强 1,马辉1, 2,韩清凯1, 2,张大志3
作者信息 +

Modeling and dynamic characteristics analysis for a pipeline system with single double-clamp

  • CHAI Qingdong1, FU Qiang1, MA Hui1, 2, HAN Qingkai1, 2, ZHANG Dazhi3
Author information +
文章历史 +

摘要

以航空发动机中的双联卡箍为研究对象,采用线性弹簧对其进行离散化等效处理。通过刚度测试装置获得双联卡箍的角刚度和部分线刚度;基于铁木辛柯梁理论建立两端固支条件下的双联卡箍管路系统的动力学模型,采用遗传算法结合模态试验搜索未能测定的双联卡箍刚度,其中仿真与试验固有频率误差不超过4.46%,两者频响函数吻合较好。在获得双联卡箍刚度的基础上,建立了单-双联卡箍管路系统的动力学模型,并通过锤击试验验证了模型的有效性,仿真与试验固有频率误差不超过3.86%,各阶振型对比较好,单-双联卡箍管路系统的动力学模型可用于卡箍管路系统振动特性分析工程实际之中。

Abstract

A double-clamp in aero-engine was taken as the study object and discretized equivalently into several linear springs. The stiffness testing device was used to obtain the double-clamp’s angular stiffness and parts of line stiffnesses. The dynamic model of a pipeline system with a double-clamp under the boundary condition of two fixed ends was established based on the theory of Timoshenko beam. The genetic algorithm (GA) combined with modal tests was adopted to search the double-clamp’s stiffnesses not being able to be measured by the stiffness testing device. It was shown that the error of the natural frequency between simulation and test is less than 4.46%; the frequency response functions of the two agree well with each other. Based on the obtained stiffnesses of the double-clamp, the dynamic model of a pipeline system with single double-clamp was established, and the hammer test was used to verify the effectiveness of the model. It was shown that the maximum error of the natural frequency between simulation and test is about 3.86%; modes simulated and those tested are consistent with each other; the established dynamic model here for pipeline systems with single double-clamp can be applied to analyze vibration characteristics of pipeline systems with clamps in engineering.

关键词

双联卡箍 / 管路 / 试验测试 / 有限元 / 固有频率 / 频响函数

Key words

double-clamp / pipeline / testing / finite element / natural frequency / frequency response function

引用本文

导出引用
柴清东1,付强 1,马辉1, 2,韩清凯1, 2,张大志3. 单-双联卡箍管路系统建模及动力学特性分析[J]. 振动与冲击, 2020, 39(19): 114-120
CHAI Qingdong1, FU Qiang1, MA Hui1, 2, HAN Qingkai1, 2, ZHANG Dazhi3. Modeling and dynamic characteristics analysis for a pipeline system with single double-clamp[J]. Journal of Vibration and Shock, 2020, 39(19): 114-120

参考文献

[1] Alizadeh A A, Mirdamadi H R, Pishevar A. Reliability analysis of pipe conveying fluid with stochastic structural and fluid parameters[J]. Engineering Structures, 2016, 122: 24-32.
[2] Tian J L, Yuan C F, Yang L, et al. The vibration characteristics analysis of pipeline under the action of gas pressure pulsation coupling[J]. Journal of Failure Analysis and Prevention, 2016, 16(3): 499-505.
[3] 尹泽勇, 陈亚农. 卡箍刚度的有限元计算与实验测定[J]. 航空动力学报, 1999, 14(2): 179-182.
YIN Ze-yong, CHEN Ya-nong. Finite element analysis and experimental measurement of stiffness of hoop. Journal of Aerospace Power[J]. Journal of Aerospace Power, 1999, 14(2): 179-182.
[4] Bezborodov S A, Ulanov A M. Calculation of vibration of pipeline bundle with damping support made of MR material[J]. Procedia Engineering, 2017, 176: 169-174.
[5] Gao P X, Zhai J Y, Yan Y Y, et al. A model reduction approach for the vibration analysis of hydraulic pipeline system in aircraft[J]. Aerospace Science and Technology, 2016, 49: 144-153.
[6] 李鑫, 王少萍. 基于卡箍优化布局的飞机液压管路减振分析[J]. 振动与冲击, 2013, 32(1): 14-20.
LI Xin, WANG Shao-ping. Vibration control analysis for hydraulic pipelines in an aircraft based on optimized clamp layout[J]. Journal of Vibration and Shock, 2013, 32(1): 14-20.
[7] 权凌霄, 李东, 王鸿鑫, 等. 弹支航空液压管路的加速度载荷响应分析[J]. 振动与冲击, 2016, 35(21):209-213.
QUAN Ling-xiao, LI Dong WANG Hong-xin, et al. Acceleration load response analysis for elastically supported aviation hydraulic pipe-lines[J]. Journal of Vibration and Shock, 2016, 35(21): 209-213.
[8] Liu M Y, Wang Z C, Zhou Z D, et al. Vibration response of multi-span fluid-conveying pipe with multiple accessories under complex boundary conditions[J]. European Journal of Mechanics-A/Solids, 2018, 72: 41-56.
[9] Elfelsoufi Z, Azrar L. Mathematical modeling of the dynamic stability of fluid conveying pipe based on integral equation formulations[J]. International Journal of Pressure Vessels and Piping, 2016, 146: 135-150.
[10] Ding H, Ji J C, Chen L Q. Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics[J]. Mechanical Systems and Signal Processing, 2019, 121: 675-688.
[11] Tang Z C, Lu Z Z, Li D W, et al. Optimal design of the positions of the hoops for a hydraulic pipelines system. Nuclear Engineering and Design[J]. 2011, 241(12): 4840-4855.
[12] 柴清东, 朴玉华, 马辉, 等. 卡箍-管路系统固有特性计算与试验方法[J]. 航空动力学报, 2019, 34(5): 1029-1035.
CHAI Qing-dong, PIAO Yu-hua, MA Hui, et al. Calculation of natural characteristics and experimental methods of the clamp-pipe system[J]. Journal of Aerospace Power, 2019, 34(5): 1029-1035.
[13] Bazoune A, Khulief Y A, Stephen N G. Shape functions of three-dimensional Timoshenko beam element[J]. Journal of Sound and Vibration, 2003, 259(2): 473-480.
[14] 刘中华,贾铎,刘鑫. 某航空发动机卡箍断裂故障分析[J]. 航空发动机, 2019, 45(3): 77-81.
LIU Zhong-hua, JIA Duo, LIU Xin. Fracture failure analysis of clamp for an aeroengine[J]. Aeroengine,2019,45(3): 77- 81.

PDF(1635 KB)

Accesses

Citation

Detail

段落导航
相关文章

/