为可靠得到小比距离爆炸下的冲击波冲量大小,建立了一种基于塑性膜片中心位移变化的测量方法。使用有限元软件LS-DYNA,通过改变塑性膜片的材料、径厚比及爆炸比距离等参数,对爆炸冲击波作用下膜片的动态响应进行数值模拟研究。利用量纲分析的手段,得到了比距离小于0.1时爆炸冲击波比冲量与塑性膜片中心位移的经验计算模型,并通过考核试验对该模型的准确性进行了验证。结果表明,该模型得到的计算值与试验值的平均误差为8.8%,可以满足工程应用的要求。
Abstract
In order to correctly measure impulse of shock wave under explosion at a small scaled distance, a measuring method based on central displacement variation of a plastic diaphragm was proposed. Using the finite element software LS-DYNA, a numerical model was built to simulate dynamic responses of plastic diaphragm under action of explosion shock wave considering influences of plastic diaphragm’s material and ratio of diameter to thickness, explosion scaled distance and so on. The dimensional analysis was used to build an empirical model to calculate scaled impulse of explosion shock wave and central displacement of plastic diaphragm during the scaled distance being less than 0.1. The accuracy of the model was verified with check tests. Results showed that the mean error between the value calculated with the model and test one is 8.8 % to meet requirements of engineering applications.
关键词
塑性膜片 /
冲击波冲量 /
中心位移
{{custom_keyword}} /
Key words
plastic diaphragm /
impulse of shock wave /
central displacement
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈昌明,李建平,白春华. 一种新的冲击波超压测试方法——压力响应膜片[J]. 中国水运. 2013, 13(01): 104-106.
Chen Chang-ming, Li Jian-ping, Bai Chun-hua. A new test way for shock wave overpressure——Pressure response diaphragm[J]. China Water Transport, 2013, 13(01): 104-106.
[2] Rajendran R, Lee J.M. Blast loaded plates[J]. Marine Structures. 2009: 99-127.
[3] 李丽萍,孔德仁,王芳,等. 基于量纲分析的爆炸冲击波效应靶模型分析与实验研究[J]. 振动与冲击. 2016, 35(6): 100-103.
Li Li-ping, Kong De-ren, Wang Fang, et al. Modeling of reactant plate subjected to explosion shock wave based on dimensional analysis and its experiment verfication[J]. Journal of Vibration and Shock, 2016, 35(6): 100-103.
[4] Brill A, Me-Bar Y, Sadot O. A method for measuring the impulse on structural foundations due to a blast[J]. International Journal of Impact Engineering. 2012, 49: 214-221.
[5] 沈飞,王辉,袁建飞. 爆炸冲量薄板测量法的理论模型及应用[J]. 应用力学学报. 2015, 32(6): 962-966.
Shen Fei, Wang Hui, Yuan Jian-fei. Theoretical model and application of sheet gauge for measuring explosive impluse[J]. Chinese Journal of Applied Mechanics, 2015, 32(6): 962-966.
[6] Gharababaei H, Darvizeh A. Experimental and Analytical Investigation of Large Deformation of Thin Circular Plates Subjected to Localized and Uniform Impulsive Loading[J]. Mechanics Based Design of Structures and Machines. 2010, 38: 171-189.
[7] 王芳,冯顺山,俞为民. 爆炸冲击波作用下靶板的塑性大变形响应研究[J]. 中国安全科学学报. 2003, 13(3): 58-61.
Wang Fang, Feng Shun-shan, Yu Wei-min. Study on Large Plastic Deformation Response of Target Plate under Explosive Blast Wave[J]. China Safety Science Journal, 2003, 13(3): 58-61.
[8] 傅辉刚,孔德仁,李丽萍,等. 基于效应靶法评价爆炸冲击波毁伤的数值仿真[J]. 测试技术学报. 2015, 29(4): 326-331.
Fu Hui-gang, Kong De-ren, Li Li-ping, et al. Numerical Simulation of Assessing the Damage of Explosive Blast Wave Base on Effective Target's Method[J]. Journal of Test and Measurement Technology, 2015, 29(4): 326-331.
[9] Langdon G S, Lee W C, Louca L A. The influence of material type on the response of plates to air-blast loading[J]. International Journal of Impact Engineering. 2015, 78: 150-160.
[10] 宋殿义,蒋志刚,白志海,等. 金属薄板与加筋板爆炸冲击响应研究进展[J]. 振动与冲击. 2010, 29(11): 41-46.
[11] 叶晓华. 军事爆破工程[M ] . 北京: 解放军出版社, 1999.
[12] 周听清. 爆炸动力学及其应用[M ] .合肥: 中国科学技术大学出版社, 2001.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}