基于旋量的风载作用3-RSR并联天线机构动力学建模

侯雨雷,张国兴,侯荣伟,曾达幸

振动与冲击 ›› 2020, Vol. 39 ›› Issue (19) : 174-181.

PDF(1677 KB)
PDF(1677 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (19) : 174-181.
论文

基于旋量的风载作用3-RSR并联天线机构动力学建模

  • 侯雨雷,张国兴,侯荣伟,曾达幸
作者信息 +

Dynamic modeling of 3-RSR parallel antenna mechanism under wind load based on screw theory

  • HOU Yulei, ZHANG Guoxing, HOU Rongwei, ZENG Daxing
Author information +
文章历史 +

摘要

天线座架动力学问题关系到天线跟踪精度,同时外界风载对天线的影响不应忽视。以3-RSR(R为转动副,S为球面副)并联机构作为天线座架,分析少自由度并联天线机构动力学问题。首先描述并联机构起始位姿状态,通过指数积公式得到并联机构各杆件的位姿矩阵;然后通过运动副关节之间的约束关系,给出并联机构的约束矩阵,得到其雅克比矩阵和各杆件的速度旋量,通过推导约束矩阵的微分形式,获得并联机构各杆件的加速度旋量;其次根据各杆件力的平衡关系,推导并联天线机构的逆动力学模型。考虑风载荷作用提出并联天线机构动力学计算流程,分别运用Matlab和ADAMS软件在俯仰和方位运动状态下对并联天线机构动力学模型进行仿真,对动力学模型进行求解与验证。研究工作对并联天线机构动力学性能提升及控制实现具有一定指导意义。

Abstract

The dynamic problem of an antenna pedestal is related to its tracking accuracy, and influences of external wind load on the antenna should not be neglected. Here, a 3-RSR (R represents revolute joint and S represents spherical one) parallel mechanism was taken as an antenna pedestal to analyze dynamic problem of a parallel antenna mechanism with a few-DOF. Firstly, the initial posture state of a parallel mechanism was described, and the posture matrix of each member of the parallel mechanism was obtained with the exponential product formula. Then, constraint relations between joints of motion pairs were used to deduce the constraint matrix of the parallel mechanism, and obtain Jacobian matrix and the velocity screw of each member. The acceleration screw of each member was obtained by deriving the differential form of the constraint matrix. Secondly, the inverse dynamic model of the parallel antenna mechanism was deduced according to the force balance relationship of each member. Considering the action of wind load, the dynamic calculation procedure of the parallel antenna mechanism was proposed. Finally, the software MATLAB and ADAMS were used to do numerical simulation for the dynamic model under motion states of pitch and azimuth, respectively, solve and verify this dynamic model. It was shown that the study results provide a certain guidance for improvement of dynamic performance and control realization of parallel antenna mechanisms.

关键词

并联机构 / 天线 / 动力学 / 风载荷 / 旋量

Key words

parallel mechanism / antenna / dynamics / wind load / screw theory

引用本文

导出引用
侯雨雷,张国兴,侯荣伟,曾达幸. 基于旋量的风载作用3-RSR并联天线机构动力学建模[J]. 振动与冲击, 2020, 39(19): 174-181
HOU Yulei, ZHANG Guoxing, HOU Rongwei, ZENG Daxing. Dynamic modeling of 3-RSR parallel antenna mechanism under wind load based on screw theory[J]. Journal of Vibration and Shock, 2020, 39(19): 174-181

参考文献

[1] 约翰 克劳斯, 罗纳德 马赫夫克. 天线[M]. 第3版. 北京: 电子工业出版社, 2011.
John D K, Ronald J M. Antennas: for All Applications [M]. 3rd ed. Beijing: Electronic Industry Press, 2011.
[2] Artemenko Y N, Vestrov E E, Korenovskii V V, et al. Method for the synthesize of parallel-structure mechanisms for orientating a space telescope antenna[J]. Journal of Machinery Manufacture and Reliability, 2012, 41(4): 265-269.
[3] 黄真, 赵永生, 赵铁石. 高等空间机构学[M]. 北京: 高等教育出版社, 2006.
HUANG Zhen, ZHAO Yong-sheng, ZHAO Tie-shi. Advanced Spatial Mechanism [M]. Beijing: Higher Education Press, 2006.
[4] 侯雨雷, 段艳宾, 窦玉超, 等. 65m射电望远镜天线副面调整机构标定研究[J]. 中国机械工程, 2013, 24(24): 3318-3322, 3328.
HOU Yu-lei, DUAN Yan-bin, DOU Yu-chao, et al. Calibration of adjusting mechanism for subreflector of a 65 meters radio telescope [J]. China Mechanical Engineering, 2013, 24(24): 3318-3322, 3328.
[5] Koch P M, Kesteven M, Nishioka H, et al. The AMiBA hexapod telescope mount [J]. Astrophysical Journal, 2009, 694(2): 1670-1684.
[6] 姚蕊, 李庆伟, 孙京海, 等. FAST望远镜馈源舱精度分析研究[J]. 机械工程学报, 2017, 53(17): 36-42.
YAO Rui, LI Qing-wei, SUN Jing-hai, et al. Accuracy analysis on focus cabin of FAST [J]. Journal of Mechanical Engineering, 2017, 53(17): 36-42.
[7] 陈兵奎, 赵骧, 王永波. 并联机构卫星通讯稳定平台运动学分析[J]. 重庆大学学报, 2008, 31(9): 982-987.
CHEN Bing-kui, ZHAO Xiang, WANG Yong-bo. Kinematic analysis of a stabilized parallel mechanism platform for satellite communication [J]. Journal of Chongqing University, 2008, 31(9): 982-987.
[8] 华为实. 基于3-RSR并联机器人机构的天线支撑[J]. 机械, 2000, 05: 10-11.
HUA Wei-shi. Antenna support based on 3RSR parallel robot mechanism [J]. Mechanics, 2000, 05: 10-11.
[9] 侯雨雷, 赵亚杰, 周治宇, 等.3RSR/SP并联车载天线机构运动及力学特性分析[J]. 中国机械工程, 2017, 28(23): 2799-2808.
HOU Yu-lei, ZHAO Ya-jie, ZHOU Zhi-yu, et al. Kinematic and mechanics characteristic analysis of 3RSR/SP parallel vehicle-borne antenna mechanisms [J]. China Mechanical Engineering, 2017, 28(23): 2799-2808.
[10] Bernabe L, Raynal N, Michel Y. 3POD-A high performance parallel antenna pointing mechanism[C]// 15th European Space Mechanisms & Tribology Symposium–ESMATS 2013.
[11] Huang Z, Li Q, Ding H. Theory of Parallel Mechanisms [M]. Springer, Dordrecht, 2013.
[12] 乔山林, 顾吉丰. 风载荷对雷达天线座的影响与评估[J]. 现代雷达. 2017, 39(10): 95-99.
QIAO Shan-lin, GU Ji-feng. Effect and evaluation of wind-load to radar pedestal [J]. Modern Radar, 2017, 39(10): 95-99.
[13] Bingul Z, Karahan O. Dynamic modeling and simulation of Stewart platform [M]// Serial and Parallel Robot Manipulators-Kinematics, Dynamics, Control and Optimization. Intechopen, 2012.
[14] 陈修龙, 孙德才, 王清. 基于拉格朗日的冗余驱动并联机构刚体动力学建模[J]. 农业机械学报, 2015, 46(12): 329-336.
CHEN Xiu-long, SUN Dei-cai, WANG Qing. Rigid dynamics modeling of redundant actuation parallel mechanism based on Lagrange method [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(12): 329-336.
[15] 王书森, 梅瑛, 李瑞琴. 新型 3T2R 龙门式混联机床动力学模型[J]. 机械工程学报, 2016, 52(15): 81-90.
WANG Shu-sen, MEI Ying, LI Rui-qin. Solving dynamics for a novel 3T2R gantry hybrid machine tool [J]. Journal of Mechanical Engineering, 2016, 52(15): 81-90.
[16] Chen G L, Yu W D, Li Q C, et al. Dynamic modeling and performance analysis of the 3-PRRU 1T2R parallel manipulator without parasitic motion [J]. 2017, 90(1): 339-353.
[17] Chen Z S, Xu L M, Zhang W Z, et al. Closed-form dynamic modeling and performance analysis of an over-constrained 2PUR-PSR parallel manipulator with parasitic motions [J]. 2019, 96(1): 517-534.
[18] 鹿玲, 姚建涛, 顾伟栋, 等. 基于Kane方程的冗余驱动5UPS/PRPU并联机床动力学分析[J]. 农业机械学报. 2016, 47(6): 366-372.
LU Ling, YAO Jian-tao, GU Wei-dong, et al. Dynamics analysis of 5UPS/PRPU parallel machine Tool with redundant actuation based on kane equation [J]. Transactions of the Chinese Society for Agricultural Machinery. 2016, 47(6): 366-372.
[19] Asadi.F, Sadat S H. Full dynamic modeling of the general stewart platform manipulator via kane's method[J]. Iranian Journal of Science and Technology-Transactions of Mechanical Engineering, 2018, 42(2): 161-168.
[20] Park F C, Kim B, Jang C, et al. Geometric algorithms for robot dynamics: A tutorial review [J]. Applied Mechanics Reviews, 2018. 70(1): 1-18.
[21] Kevin M, Lynch, Park F C. Modern Robotics: Mechanics, Planning, and Control [M]. Cambridge University Press, 2017.
[22] Zhao T S, Geng M C, Chen Y H, et al. Kinematics and dynamics hessian matrices of manipulators based on screw theory[J]. Chinese Journal of Mechanical Engineering, 2015, 28(2): 226-235.
[23] Roy F. Rigid Body Dynamics Algorithms [M]. Canberra: Springer, 2008.
[24] Roy F. A beginners guide to 6-D vectors (part 1) [J]. Robotics & Automation Magazine IEEE, 2010, 17(4): 88-99.

PDF(1677 KB)

Accesses

Citation

Detail

段落导航
相关文章

/