低阻尼多变量系统频率响应函数的非参数辨识方法

周祎,张二亮

振动与冲击 ›› 2020, Vol. 39 ›› Issue (19) : 182-186.

PDF(1088 KB)
PDF(1088 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (19) : 182-186.
论文

低阻尼多变量系统频率响应函数的非参数辨识方法

  • 周祎,张二亮
作者信息 +

Nonparametric identification method for frequency response function of a lightly damped multi-variable system

  • ZHOU Yi, ZHANG Erliang
Author information +
文章历史 +

摘要

针对由于低阻尼带来的频率响应函数在共振峰处难以精确建模与估计的问题,基于局部有理模型,发展一种动态多变量系统的非参数辨识方法。为消除最小二乘法导致的参数估计偏差,通过引入权重函数构建新的成本函数,实现参数的一致估计,给出数值稳定的参数优化算法,并构造估计频率响应函数的不确定区间。然后,将建立的频率响应函数非参数辨识方法扩展至变量带误差系统情形。最后,通过仿真和实验验证了本文方法的有效性。

Abstract

Aiming at the problem of frequency response function (FRF) being difficult to be modeled and estimated due to light damping, based on the local rational model,a non-parametric identification method for FRF of a lightly damped multi-variable system was proposed.To eliminate the parametric estimation deviation caused by the least-squares method, a weight function was introduced to construct a new cost function, and realize parametric consistent estimation.A numerically stable parametric optimization algorithm was established, and an uncertain interval was constructed to estimate FRF. Then, the proposed FRF non-parametric identification method was extended to the case of variable with error system.Finally, the effectiveness of the proposed method was verified with simulation and tests.

关键词

频率响应函数 / 非参数辨识 / 局部有理模型 / 低阻尼多变量系统

Key words

frequency response function (FRF) / non-parametric identification / local rational model / lightly damped multi-variable system

引用本文

导出引用
周祎,张二亮. 低阻尼多变量系统频率响应函数的非参数辨识方法[J]. 振动与冲击, 2020, 39(19): 182-186
ZHOU Yi, ZHANG Erliang. Nonparametric identification method for frequency response function of a lightly damped multi-variable system[J]. Journal of Vibration and Shock, 2020, 39(19): 182-186

参考文献

[1] AVITABILE P. Modal testing: a practitioner's guide[M]. John Wiley & Sons, 2017.
 [2] SCHOUKENS J, VANDERSTEEN G, BARBÉ K, et al. Nonparametric Preprocessing in System Identification: a Powerful Tool, European Journal of Control, 2009,15 (3–4):260-274.
 [3] BRILLINGER D R. Time series: Data analysis and t¬h¬eory[J]. McGraw Hall, 1981.
 [4] LJUNG L. System Identification-Theory for the User 2nd edition PTR Prentice-Hall[J]. Upper Saddle River, NJ, 1999.
 [5] PINTELON R, SCHOUKENS J, VANDERSTEEN G. Frequency domain system identification using arbitrary signals[J]. IEEE Transactions on automatic control, 1997,42(12):1717-1720.
 [6] MCKELVEY T. Frequency domain identification meth¬ods[J]. Circuits, Systems and Signal Processing, 2002,21(1):39-55.
 [7] PINTELON R, SCHOUKENS J, VANDERSTEEN G, et al. Estimation of nonparametric noise and FRF mo¬d¬els for multivariable systems—Part I: Theory[J]. Me¬c¬hani¬cal Systems and Signal Processing, 2010,24(3):573-595.
 [8] MCKELVEY T, GUÉRIN G. Non-parametric frequenc¬y response estimation using a local rational model1[J]. IFAC Proceedings Volumes, 2012,45(16):49-54.
 [9] HÄGG P, SCHOUKENS J, GEVERS M, et al. The t¬r¬ansient impulse response modeling method for non-p¬a¬rametric system identification[J]. Automatica, 2016,68:314-328.
[10] LATAIRE J, CHEN T. Transfer function and transient estimation by Gaussian process regression in the frequ¬ency domain[J]. Automatica, 2016,72:217-229.
[11] DARWISH M A, LATAIRE J, TÓTH R. Bayesian fr¬e¬quency domain identification of LTI systems with O¬BFs kernels[J]. IFAC-PapersOnLine, 2017,50(1):6238-6243.
[12] GEERARDYN E, OOMEN T, SCHOUKENS J. Enha¬n¬c¬ing ℋ∞ Norm Estimation using Local LPM/LRM M¬odeling: Applied to an AVIS[J]. IFAC Proceedings Volumes, 2014,47(3):10856-10861.
[13] GEERARDYN E. Development of user-friendly system identification techniques[Z]. Ph. D. thesis, Vrije Univ¬ersiteit Brussel, 2016.
[14] EVERS E, de JAGER B, OOMEN T. Improved Local Rational Method by incorporating system knowledge: with application to mechanical and thermal dynamical systems[J]. IFAC-PapersOnLine, 2018,51(15):808-813.
[15] VOORHOEVE R, van der MAAS A, OOMEN T. Non-parametric identification of multivariable systems: A local rational modeling approach with application to a vibration isolation benchmark[J]. Mechanical Systems a¬nd Signal Processing, 2018,105:129-152.
[16] PINTELON R, SCHOUKENS J. System identification: a frequency domain approach[M]. John Wiley & Sons, 2012.
[17] PINTELON R, GUILLAUME P, ROLAIN Y, et al. Parametric identification of transfer functions in the fr¬e¬quency domain-a survey[J]. IEEE transactions on aut¬o¬matic control, 1994,39(11):2245-2260.
[18] ZHANG E, PINTELON R, SCHOUKENS J. Errors-in-v-a¬riables identification of dynamic systems excited by ar¬b¬i¬trary non-white input[J]. Automatica, 2013,49(10):3032-3041.
[19] DENNIS JR J E, SCHNABEL R B. Numerical meth¬o¬ds for unconstrained optimization and nonlinear equa¬t¬i¬ons[M]. Siam, 1996.

PDF(1088 KB)

Accesses

Citation

Detail

段落导航
相关文章

/