基于SANC和一维卷积神经网络的齿轮箱轴承故障诊断

高佳豪,郭瑜,伍星

振动与冲击 ›› 2020, Vol. 39 ›› Issue (19) : 204-209.

PDF(1454 KB)
PDF(1454 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (19) : 204-209.
论文

基于SANC和一维卷积神经网络的齿轮箱轴承故障诊断

  • 高佳豪,郭瑜,伍星
作者信息 +

Gearbox bearing fault diagnosis based on SANC and 1-D CNN

  • GAO Jiahao, GUO Yu, WU Xing
Author information +
文章历史 +

摘要

近来以深度学习算法为代表的滚动轴承特征智能提取和故障辨识技术被广泛研究,但目前研究大多局限于无强干扰的轴承故障。在齿轮箱存在较强齿轮振动干扰条件下,基于此类算法的轴承故障辨识率将显著降低。为提高在较强齿轮振动信号干扰下齿轮箱轴承故障智能辨识的准确率,本文提出一种基于自参考自适应噪声消除技术(SANC)和一维卷积神经网络(1D-CNN)的齿轮箱轴承故障诊断方法。首先利用SANC将齿轮箱振动信号分离为周期性信号分量成分和随机信号分量,抑制齿轮等周期强干扰成分,再通过1D-CNN对包含轴承故障特征的随机信号成分进行智能特征提取和识别,实现在齿轮振动干扰下齿轮箱轴承故障辨识率的提高。通过与不同方法的对比验证了本文所提方法的优势和有效性。

Abstract

Recently, feature intelligent extraction and fault recognition techniques of rolling bearing based on deep learning algorithm are widely studied, but most of studies are limited to bearing faults without strong interference. Under the condition of stronger gear vibration interference existing in gearbox, the bearing fault recognition rate based on this type algorithm significantly drops. Here, in order to improve the accuracy rate of gearbox bearing fault intelligent recognition under stronger gear vibration signals interference, a gearbox bearing fault diagnosis method based on self-reference adaptive noise cancellation (SANC) technique and one-dimensional convolution neural network (1-DCNN) was proposed. Firstly, SANC was used to decompose gear vibration signals into periodic signal components and random signal ones, and suppress gear periodic strong interference components. Then, 1-D CNN was used to do intelligent feature extractionand recognition of random signal components containing bearing fault features, and realize improving gearbox bearing fault recognition rate under strong gear vibration interference.The advantages and effectiveness of the proposed method were verified with comparison to different methods.

关键词

齿轮箱 / 自参考自适应噪声消除技术 / 一维卷积神经网络 / 故障诊断

Key words

gearbox / self-reference adaptive noise cancellation(SANC) technique / 1-D convolution neural network (CNN) / fault diagnosis

引用本文

导出引用
高佳豪,郭瑜,伍星. 基于SANC和一维卷积神经网络的齿轮箱轴承故障诊断[J]. 振动与冲击, 2020, 39(19): 204-209
GAO Jiahao, GUO Yu, WU Xing. Gearbox bearing fault diagnosis based on SANC and 1-D CNN[J]. Journal of Vibration and Shock, 2020, 39(19): 204-209

参考文献

[1]  丁康, 朱小勇, 陈亚华. 齿轮箱典型故障振动特征与诊断策略[J]. 振动与冲击, 2001(3):7-12.
DING Kang, ZHU Xiaoyong, CHEN Yahua, et al. The vibration characteristics of typical gearbox faults and its diagnosis plan[J]. Journal of Vibration and Shock, 2001(3):7-12.
[2]  代士超, 郭瑜, 伍星. 基于同步平均与倒频谱编辑的齿轮箱滚动轴承故障特征量提取[J]. 振动与冲击, 2015, 34(21):205-209.
DAI Shi-chao, GUO Yu, WU Xing, et al. Gear-box rolling bearing’s fault features extraction based on cepstrum editing and time domain synchronous average[J]. Journal of Vibration and Shock, 2015, 34(21):205-209.
[3]  Ben Ali J , Fnaiech N , Saidi L , et al. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals[J]. Applied Acoustics, 2015, 89:16-27.
[4]  徐涛, 裴爱岭, 刘勇. 基于谐波小波包和SVM的滚动轴承故障诊断方法[J]. 沈阳航空航天大学学报, 2014, 31(4):50-54.
Xu Tao, PEI Ai-ling, LIU Yong, et al. Fault diagnosis of roller bearings with harmonic wavelet package and SVM[J]. Journal of Shenyang Aerospace University, 2014, 31(4):50-54.
[5]  Jia F , Lei Y , Lin J , et al. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J]. Mechanical Systems and Signal Processing, 2016, 72-73:303-315.
[6]  Singh S K, Kumar S, Dwivedi J P. Compound fault prediction of rolling bearing using multimedia data[J]. Multimedia Tools and Applications, 2017, 76(18): 18771-18788.
[7]  李恒, 张氢, 秦仙蓉,等. 基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J]. 振动与冲击, 2018, 37(19):132-139.
LI Heng, ZHANG Qin, QIN Xianrong, et al. Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network[J]. Journal of Vibration and Shock, 2018, 37(19):132-139.
[8]  陈仁祥, 黄鑫, 杨黎霞,等. 基于卷积神经网络和离散小波变换的滚动轴承故障诊断[J]. 振动工程学报, 2018, 31(05):161-169.
CHEN Ren-xiang, HUANG Xin, YANG Li-xia, et al. Rolling bearing fault identification based on convolution neural network and discrete wavelet transform[J]. Journal of Mechanical Engineering, 2018, 31(05):161-169.
[9]  吴春志, 江鹏程, 冯辅周,等. 基于一维卷积神经网络的齿轮箱故障诊断[J]. 振动与冲击, 2018, 37(22):56-61.
WU Chunzhi, JIANG Pengcheng, FENG Fuzhou, et al. Faults diagnosis method for gearboxes based on a 1-D convolutional neural network[J]. Journal of Vibration and Shock, 2018, 37(22):56-61.
[10]  Chen Y, Fang H, Xu B, et al. Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution[J]. arXiv preprint arXiv:1904.05049, 2019.
[11]  Antoni J, Randall R B. Unsupervised noise cancellation for vibration signals: part I—evaluation of adaptive algorithms[J]. Mechanical Systems and Signal Processing, 2004, 18(1): 89-101.
[12]  贺东台, 郭瑜, 伍星,等. 基于自参考自适应消噪的行星轮轴承内圈故障特征提取[J]. 振动与冲击, 2018, 37(17):109-114.
HE Dongtai, GUO Yu, WU Xing, et al. Fault feature extraction for a plant gear’s inner race based on self-reference adaptive de-noising[J]. Journal of Vibration and Shock, 2018, 37(17):109-114.
[13]  Rafaely B, Elliot S J. A computationally efficient frequency-domain LMS algorithm with constraints on the adaptive filter[J]. IEEE Transactions on Signal Processing, 2000, 48(6): 1649-1655.
[14]  Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.
[15]  Abdeljaber O, Avci O, Kiranyaz S, et al. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks[J]. Journal of Sound and Vibration, 2017, 388: 154-170.
[16]  Jing L, Zhao M, Li P, et al. A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox[J]. Measurement, 2017, 111: 1-10.
[17]  Sun W, Zhao R, Yan R, et al. Convolutional discriminative feature learning for induction motor fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2017, 13(3): 1350-1359.
[18]  Zhang W, Peng G, Li C, et al. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017, 17(2): 425.
[19]  Zeidler J R. Performance analysis of LMS adaptive prediction filters[J]. Proceedings of the IEEE, 1990, 78(12): 1781-1806.
[20]  Hinton G E, Srivastava N, Krizhevsky A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer Science, 2012, 3(4):págs. 212-223.

PDF(1454 KB)

Accesses

Citation

Detail

段落导航
相关文章

/