考虑PSI的深水高墩大跨桥梁地震易损性分析

吴文朋1,2,梁鹏2,3,龙士国2,张旭辉2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (19) : 210-217.

PDF(2043 KB)
PDF(2043 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (19) : 210-217.
论文

考虑PSI的深水高墩大跨桥梁地震易损性分析

  • 吴文朋1,2,梁鹏2,3,龙士国2,张旭辉2
作者信息 +

Seismic fragility analysis for high-pier and long-span bridges in deep water considering pile-soil interaction

  • WU Wenpeng1,2, LIANG Peng2,3, LONG Shiguo2, ZHANG Xuhui2
Author information +
文章历史 +

摘要

以某深水高墩大跨连续刚构桥梁为工程背景,考虑桩-土相互作用(PSI)、动水压力以及二者联合作用效应的影响,基于OpenSEES源代码分析平台建立有限元模型,随机选取100条近场地震波来考虑地震动输入的不确定性,以峰值地面速度(PGV)作为地震动强度参数,然后分别以墩顶、墩底曲率以及支座相对位移作为损伤指标,建立了桥梁不同构件的概率地震需求模型和地震易损性曲线,对深水桥梁的抗震性能进行了分析和评估。研究结果表明:深水桥梁的动水压力效应会增大桥墩的地震失效概率,但支座的失效概率会略有降低;考虑桩-土相互作用时墩底截面和支座的失效概率会有所减小,但墩顶的失效概率会有所增加;动水压力和桩-土相互作用均对支座易损性的影响相对较小;动水压力对高墩桥梁易损性的影响比桩-土相互作用要大。

Abstract

A certain high-pier long-span continuous rigid frame bridge in deep water was taken as engineering background,considering effects of pile-soilinteraction (PSI), dynamic water pressure and their joint action effect,the finite element analysis model for the bridge was built based on OpenSEES source code analysis platform. 100 near-field earthquake wave records were randomly selected to consider the uncertainty of seismic input, and the peak ground velocity (PGV) was chosen as the seismic intensity parameter. Then, curvatures of both top and bottom of high-pier, and relative displacements of supports were taken as damage indexes to establish probabilistic seismic demand models and seismic fragility curves for the bridge’s different components, and analyze and estimate the seismic performance of the bridge in deep water. The study results showed that dynamic water pressure effect of the bridge in deep water can increase seismic failure probabilities of bridge piers, but failure probabilities of supports can drop slightly; when considering PSI, failure probabilities of pier bottoms and supports can be reduced, but failure probabilities of pier topscan grow; dynamic water pressure and PSI have relatively smaller effects on support vulnerability; effects of dynamic water pressure on the vulnerability of high-pier bridgesare greater than those of PSI.

关键词

高墩大跨桥梁 / 近场地震 / 地震易损性 / 动水压力 / 桩-土相互作用

Key words

high-pier long-span bridge / near-field earthquake / seismic fragility / dynamic water pressure / pile-soilinteraction (PSI)

引用本文

导出引用
吴文朋1,2,梁鹏2,3,龙士国2,张旭辉2. 考虑PSI的深水高墩大跨桥梁地震易损性分析[J]. 振动与冲击, 2020, 39(19): 210-217
WU Wenpeng1,2, LIANG Peng2,3, LONG Shiguo2, ZHANG Xuhui2. Seismic fragility analysis for high-pier and long-span bridges in deep water considering pile-soil interaction[J]. Journal of Vibration and Shock, 2020, 39(19): 210-217

参考文献

[1] 陈乐生. 汶川地震公路震害调查-桥梁[M]. 北京: 人民交通出版社,2012.
[2] 宋帅, 钱永久, 吴刚. 基于多元Copula函数的桥梁体系地震易损性分析方法研究[J]. 振动与冲击, 2017, 36(9): 122-129.
SONG Shuai, QIAN Yongjiu,  WU Gang. Seismic fragility analysis of a bridge system based on multivariate Copula function [J]. Journal of Vibration and Shock, 2017, 36(9): 122-129.
[3] 吴文朋, 李立峰, 王连华等. 基于IDA的高墩大跨桥梁地震易损性分析[J]. 地震工程与工程振动, 2012, 32(3): 117-123.
WU Wenpeng, LI Lifeng, HU Sicong, et al. Evaluation of Seismic Vulnerability of High-Pier Long-Span Bridge Using Incremental Dynamic Analysis[J]. Earthquake Engineering and Engineering Dynamics. 2012, 32(3): 117-123.
[4] 陈彦江, 郝朝伟, 闫维明等. 考虑行波效应的高墩刚构桥地震易损性分析[J]. 世界地震工程, 2016, 32(3): 179-184.
CHEN Yanjiang, HAO Chaowei, YAN Weiming, et al. Seismic vulnerability analysis for high pier rigid bridge considering traveling wave effect [J]. World Earthquake Engineering, 2016, 32(3): 179-184.
[5] 陈静. 钢筋混凝土空心高墩桥梁地震易损性分析及抗震加固研究[D].北京:北京交通大学, 2014.
[6] 董俊. 铁路高墩大跨刚构-连续组合体系桥梁近场地震易损性分析研究[D].成都:西南交通大学, 2016.
[7] JTG/TB02-01 2008. 公路桥梁抗震设计细则[S]. 北京:人民交通出版社,2008
[8] 燕斌, 王志强, 王君杰. 桥梁桩基础计算中p-y曲线法与m法的对比研究[J]. 结构工程师, 2007, 23(4): 62-68.
YAN Bin, WANG Zhiqiang, WANG Junjie. Study on Comparison of p-y Method and m-Method in Computation of Bridge Pile Foundations [J]. Structural Engineers, 2007, 23(4): 62-68.
[9] BOULANGER R W, CURRAS C J, KUTTER B L, et al. Seismic Soil-Pile-Structure Interaction Experiments and Analyses[J]. Journal of Geotechnical & Geoenvironmental Engineering, 1999, 125(9): 750-759.
[10] 高昊, 王君杰, 苏俊省等. 桩-土水平弹簧系数对桥梁地震反应影响的参数分析[J]. 振动与冲击, 2017, 36(14): 156-167.
GAO Hao, WANG Junjie, SU Junsheng, et al. Parameter analysis of the influence of soil-pile horizontal spring coefficient on seismic response of bridge[J]. Journal of Vibration and Shock, 2017, 36(14): 156-167.
[11] 吕杨, 刘喆, 李忠献. 考虑桩-土相互作用的不等高墩桥地震响应分析[J]. 振动与冲击, 2016, 35(23): 114-120.
LV Yang, LIU Zhe, LI Zhongxian. Seismic response analysis for unequal height pier bridges considering soil-pile interaction [J]. Journal of Vibration and Shock, 2016, 35(23): 114-120.
[12] 李富荣, 陈国兴,王志华. 考虑动水压力影响的单柱式桥墩地震反应分析[J]. 地震工程与工程振动, 2008, 28(2): 114-121.
LI Furong, CHEN Gguoxin, WANG Zhihua. Seismic responses of single-column pier considering the effects of hydrodynamic pressure [J]. Earthquake Engineering and Engineering Dynamics. 2008, 28(2): 114-121.
[13] PANG Y, KAI W, YUAN W, et al. Effects of Dynamic Fluid-Structure Interaction on Seismic Response of Multi-Span Deep Water Bridges Using Fragility Function Method [J]. Advances in Structural Engineering, 2015, 18(4): 525-542.
[14] 袁万城, 林曾, 党新志等. 考虑地震动空间效应的深水桥梁减震性能[J]. 同济大学学报(自然科学版), 2017, 45(5): 625-632.
YUAN Wancheng, LIN Zeng, DANG Xinzhi, et al. Seismic isolation performance of bridges in deep water considering the spatial variability of ground motions[J]. Journal of Tongji University (Natural Science), 2017, 45(5): 625-632.
[15] 冼巧玲, 冯俊迎, 崔杰. 基于PSDM和IDA法的深水隔震桥梁地震易损性分析比较[J]. 广州大学学报(自然科学版), 2016, 15(2): 1-6.
XIAN Qiao-ling, FENG Jun-ying, CUI Jie. A comparative study on the seismic vulnerability of the deep-water isolated bridge based on the PSDM and the IDA methods[J]. Journal of Guangzhou University (Natural Science Edition), 2016, 15(2): 1-6.
[16] 冯俊迎, 冼巧玲, 崔杰等. 基于IDA分析的深水隔震桥梁抗震性能评估[J]. 地震工程与工程振动, 2016, 36(4): 121-129.
FENG Junying, XIAN Qiaoling, CUI Jie ,et al. Seismic performance evaluation of the isolation bridge in deep-water by the incremental dynamic analysis method[J]. Earthquake Engineering and Engineering Dynamics, 2016,36(04):121-129
[17] 江辉, 金佳敏, 王志刚等. 基于IDA的深水连续刚构桥桥墩概率性地震损伤特性[J]. 中国公路学报, 2017, 30(12): 89-100.
JIANG Hui, JIN Jia-min, WANG Zhi-gang, et al. Probabilistic seismic damage characteristics for piers of eeep-water continuous rigid frame bridge based on IDA method[J]. China Journal of Highway and Transport, 2017, 30(12): 89-100.
[18] 金佳敏. 基于IDA方法的大跨度深水刚构桥地震损伤性能研究[D].北京:北京交通大学, 2016.
[19] 徐德利. 动水压力影响下的高墩连续刚构桥地震易损性研究[D].成都:西南交通大学, 2018.
[20] 江辉, 王志, 白晓宇等. 近、远场强震下深水桥梁群桩基础的非线性响应及损伤特性[J]. 振动与冲击, 2017, 36(24): 13-22.
JANG Hui, WANG Zhi, BAI Xxiaoyu, et al. Nonlinear responses and damage characteristics for group-piles foundation of a deep-water bridge under strong near-fault and far-field earthquakes [J]. Journal of Vibration and Shock, 2017, 36(24): 13-22.
[21] JTG D63-2007. 公路桥涵地基与基础设计规范[S]. 北京: 人民交通出版社,2007
[22] JTS 167-4-2012. 港口工程桩基规范[M]. 北京:人民交通出版社,2012
[23] 黄信, 李忠献. 动水压力作用对深水桥墩地震响应的影响[J]. 土木工程学报, 2011, 44(1): 65-73.
HUANG Xin, LI Zhongxian Influence of hydro dynamic pressure on seismic response of bridge piers in deep water [J]. China Civil Engineering Journal, 2011, 44(1): 65-73.
[24] 杨万理. 深水桥梁动水压力分析方法研究 [D].成都:西南交通大学, 2012.
[25] 吴文朋. 考虑不确定性的钢筋混凝土桥梁地震易损性研究[D].长沙: 湖南大学, 2016.
[26] SHOME N, CORNELL C, BAZZURRO P, et al.  Earthquakes, records, and nonlinear responses [J]. Earthquake Spectra, 1998, 14(3): 469-500.
[27] 吴文朋,李立峰. 桥梁结构系统地震易损性分析方法研究[J]. 振动与冲击, 2018, 37(21): 273-280.
WU Wenpeng, LI Lifeng. System seismic fragility analysis methods for bridge structures [J]. Journal of Vibration and Shock, 2018, 37(21): 273-280.

PDF(2043 KB)

Accesses

Citation

Detail

段落导航
相关文章

/