基于DMD方法的可变形状空腔流动模态分析

刘哲1,2,宁方立1,2,张畅通1,翟庆波1,2,丁辉1,韦娟3

振动与冲击 ›› 2020, Vol. 39 ›› Issue (19) : 218-225.

PDF(2490 KB)
PDF(2490 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (19) : 218-225.
论文

基于DMD方法的可变形状空腔流动模态分析

  • 刘哲1,2,宁方立1,2,张畅通1,翟庆波1,2,丁辉1,韦娟3
作者信息 +

Modal analysis of morphing cavities flow based on DMD method

  • LIU Zhe1,2, NING Fangli1,2, ZHANG Changtong1, ZHAI Qingbo1,2, DING Hui1, WEI Juan3
Author information +
文章历史 +

摘要

空腔自激振荡现象广泛存在于航空航天领域,剧烈的压力振荡会造成空腔内部零部件的结构疲劳和破坏,因此研究空腔噪声的控制方法具有重大意义。提出一种可变形状空腔,在空腔内部安装一种曲柄滑块机构从而调整底面和后壁面的倾斜角度。通过直接数值模拟法对马赫数为0.5、低雷诺数下的可变形状空腔流动进行数值仿真。结果表明随着后壁面倾斜角度的增大,监测点处的模态声压级、总声压级均逐渐减小,表明空腔内部流场流动更加平稳,压力振荡明显减弱。此外,通过动态模态分解(DMD)方法对不同后壁面倾斜角度的可变形状空腔进行动态模态分析。研究发现所有的DMD模态均为收敛模态,且随着后壁面倾斜角度的增大,流动越趋于稳定极限环状态;主模态频率所对应的DMD模态结构不同,主要表现为正、负向大尺度结构的位置不同且随着倾斜角度的增大,结构尺度逐渐减小。

Abstract

Cavity self-excited oscillation exists widely in aerospace field, andsevere pressure oscillations cause structural fatigue and damage of components inside a cavity, so it is of great significance to study the control method of cavity noise.Here,a morphing cavity was proposed, inside it a crank-slider mechanism was installed to adjust inclination angle of its bottom surface and back wall one. The flow in a morphing cavity with Mach 0.5 and low Reynolds number was simulated with the direct numerical simulation.Results showed that with increase in inclination angle of back wall surface, the modal sound pressure level and the total sound pressure level at the monitored point gradually decrease, so the flow field in the cavity is more stable and the pressure oscillation is obviously weakened; the dynamic mode decomposition (DMD) method was used to do the dynamic modal analysis of morphing cavities with different inclination angles of back wall surface, all dynamic modes show to be convergent ones, the flow tends to a stable limit cycle  state with increase in inclination angle of back wall surface; dynamic mode structures corresponding to the main modal frequency are different, they show different positions of large-scale structures with positive and negative directions, with increase in inclination angle, structures’ scales gradually decrease.

关键词

可变形状空腔 / 空腔噪声 / 直接数值模拟 / 动态模态分解 / 模态分析

Key words

morphing cavity / cavity noise / direct numerical simulation / dynamic mode decomposition (DMD) / modal

引用本文

导出引用
刘哲1,2,宁方立1,2,张畅通1,翟庆波1,2,丁辉1,韦娟3. 基于DMD方法的可变形状空腔流动模态分析[J]. 振动与冲击, 2020, 39(19): 218-225
LIU Zhe1,2, NING Fangli1,2, ZHANG Changtong1, ZHAI Qingbo1,2, DING Hui1, WEI Juan3. Modal analysis of morphing cavities flow based on DMD method[J]. Journal of Vibration and Shock, 2020, 39(19): 218-225

参考文献

[1] ROBERTS D A, MACMANUS D G, JOHNSON R A, et al. Passive attenuation of modal cavity aeroacoustics under supersonic and transonic conditions[J]. AIAA Journal, 2014, 53(7): 1861-1877.
[2] HAGIWARA I, WANG D W, SHI Q Z, et al. Reduction of noise inside a cavity by piezoelectric actuators[J]. Journal of vibration and acoustics. 2003, 125(1): 12-17.
[3] OZA U, HU Z, ZHANG X. Effect of cavity flow on landing gear aerodynamic loads[C]. Dallas: 22nd AIAA Computational Fluid Dynamics Conference, 2015: 2288.
[4] ROSSITER J E. Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[R]. Ministry of Aviation; Royal Aircraft Establishment; RAE Farnborough, 1964.
[5] UKEILEY L S, PONTON M K, SEINER J M, et al. Suppression of pressure loads in cavity flows[J]. AIAA Journal, 2004, 42(1): 70-79.
[6] SMITH B, WELTERLEN T, MAINES B, et al. Weapons bay acoustic suppression from rod spoilers[J]. AIAA. 2002, 662.
[7] PEY Y Y, CHUA L P. Effects of trailing wall modifications on cavity wall pressure[J]. Experimental Thermal and Fluid Science, 2014, 57: 250-260.
[8] 余培汛, 白俊强, 郭博智, 等. 剪切层形态对开式空腔气动噪声的抑制[J]. 振动与冲击, 2015, 34(1): 156-164.
YU P, BAI J, GUO B, et al. Suppression on aerodynamic noise by altering form of shear layer in open cavity[J]. Journal of Vibration and Shock, 2015, 34(1): 156-164 (in Chinese).
[9] VAKILI A D, GAUTHIER C. Control of cavity flow by upstream mass-injection[J]. Journal of Aircraft, 1994, 31(1): 169-174.
[10] GEORGE B, UKEILEY L, CATTAFESTA L, et al. Control of three-dimensional cavity flow using leading-edge slot blowing[C]. Kissimmee: 53rd AIAA Aerospace Sciences Meeting, 2015: 1059.
[11] GROVE J, SHAW L, LEUGERS J, et al. USAF/RAAF F-111 flight test with active separation control[C]. Reno: 41st Aerospace Sciences Meeting and Exhibit, 2003: 9.
[12] THANGAMANI V, KURIAN J. Control of cavity oscillations in a supersonic flow by microjet injection[J]. Journal of Aircraft, 2013, 50(4): 1305-1309.
[13] SCHMIT R, RAMAN G. High and low frequency actuation comparison for a weapons bay cavity[J]. International Journal of Aeroacoustics, 2006, 5(4): 395-414.
[14] 宁方立, 宁舜山, 石旭东, 等. 可变形状空腔噪声的数值仿真研究[J]. 振动与冲击, 2018, 37(19): 231-258.
NING F, NING S, SHI X, et al. Numerical simulation for deformable cavity noise[J]. Journal of Vibration and Shock, 2018, 37(19): 231-258 (in Chinese).
[15] ROWLEY C W, COLONIUS T, BASU A J. On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities[J]. Journal of Fluid Mechanics, 2002, 455: 315-346.
[16] ZHANG C, WAN Z, SUN D. Mode transition and oscillation suppression in supersonic cavity flow[J]. Applied Mathematics and Mechanics, 2016, 37(7): 941-956.
[17] NOACK B R, AFANASIEV K, MORZYNSKI M, et al. A hierarchy of low-dimensional models for the transient and post-transient cylinder wake[J]. Journal of Fluid Mechanics, 2003, 497(1): 335-363.
[18] ROWLEY C W, MEZIC I, BAGHERI S, et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics, 2009, 641(1): 115-127.
[19] CHEN L W, XU C Y, LU X Y, Numerical investigation of the compressible flow past an aerofoil[J]. Journal of Fluid Mechanics, 2010, 643(1): 97-126.
[20] 李  静, 张伟伟, 李新涛. 失稳初期的低雷诺数圆柱扰流POD-Galerkin建模方法研究[J]. 西北工业大学学报, 2015, 33(4): 596-602.
LI J, ZHANG W, LI X. Researching method of building flow field of initial development stage of low Reynolds number flow past a circular cylinder[J]. Journal of Northwestern Polytechnical University, 2015, 33(4): 596-602 (in Chinese).
[21] SCHIMD P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656(1): 5-128.
[22] MA X, GEISLER R, SCHRÖDER A. Experimental Investigation of Three-Dimensional Vortex Structures Downstream of Vortex Generators Over a Backward-Facing Step[J]. Flow Turbulence and Combustion, 2017, 98(2):389-415.
[23] STATNIKOV V, ROIDL B, MEINKE M H, et al. Analysis of spatio-temporal wake modes of space launchers at transonic flow[C]. AIAA Science and Technology Forum and Exposition. 2015.
[24] ALENIUS, E. Mode switching in a thick orifice jet, an LES and dynamic mode decomposition approach[J]. Computers & Fluids, 2014, 90:101-112.
[25] Nair V, ALENIUS E, BOIJ S, et al. Inspecting sound sources in an orifice-jet flow using LAGRANGIAN Coherent Structures[J]. Computers & Fluids, 2016, 140:.397-405.
[26] STANKIEWICZ W, MORZYŃSKI, MAREK, KOTECKI K, et al. Modal decomposition-based global stability analysis for reduced order modeling of 2D and 3D wake flows[J]. International Journal for Numerical Methods in Fluids, 2016, 81(3):178-191.
[27] STANKIEWICZ W, KOTECKI K, MORZYŃSKI, M, et al. Model order reduction for a flow past a wall-mounted cylinder[J]. Archives of Mechanics, 2016, 68(2):161-176.
[28] 韩忠华, 王绍楠, 韩莉, 等. 一种基于动模态分解的翼型流动转捩预测新方法[J]. 航空学报, 2017, 38(01): 35-51.
HAN Z, WANG S, HAN L, et al. A novel method for automatic transition prediction of flows over airfoil based on dynamic mode decomposition[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(01): 35-51 (in Chinese).
[29] 魏佳云, 李伟鹏, 许思为, 等. 基于DMD方法的缝翼低频噪声机理分析[J]. 航空学报, 2018, 39(01): 182-192.
WEI J, LI W, XU S, et al. Mechanism of slat low frequency noise based on zonal DMD[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(01): 182-192 (in Chinese).
[30] 寇家庆, 张伟伟, 高传强. 基于POD和DMD方法的跨声速抖振模态分析[J]. 航空学报, 2016, 37(9):2679-2689.
KOU J, ZHANG W, GAO W. Modal analysis of transonic buffet based on POD and DMD method[J]. Acta Aeronautica et Astronautica Sinica, , 2016, 37(9):2679-2689 (in Chinese).
[31] LIU H, YAN C, ZHAO Y, et al. Analysis of pressure fluctuation in transonic cavity flows using modal decomposition[J]. Aerospace Science and Technology, 2018, 77: 819-835.
[32] 叶  坤, 叶正寅, 武洁, et al. DMD和POD对超燃冲压发动机凹腔流动的稳定性分析[J]. 气体物理, 2016(5): 39-51.
YE K, YE Z, WU J, et al. Stability analysis of scramjet open cavity flow base on POD and DMD method[J]. Physics of Gases, 2016(5): 39-51 (in Chinese).
[33] GREENSHIELDS C J. OpenFoam user guide[M]. 4th ed. London: OpenFoam Foundation Ltd, 2015.
[34] GLOERFELT X, BOGEY C, BAILLY C, et al. Aerodynamic noise induced by laminar and turbulent boundary layers over rectangular cavities[C]. 8nd AIAA Aero-Acoustics Conference, 2002: 2002-2033.
[35] 张  超. 超声速方腔流动及控制的数值模拟[D]. 中国科学技术大学, 2016: 31-53.
ZHANG C. Numerical simulation of supersonic cavity flow and control[D]. 2016: 31-53(in Chieses).
[36] SYED S A, HOFFMANN K . Numerical investigation of 3-d open cavity with and without cover plates[C]// AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition. 2009: 551-570.
[37] BOYCE W E, DIPRIMA R C. Elementary differential equations[M]. 9th Ed. Wiley, 2008: 4.
[38] GLOERFELT X. Compressible proper orthogonal decomposition/Galerkin reduced-order model of self-sustained oscillations in a cavity[J]. Physics of Fluids, 2008, 20(11): 315-342.
[39] MURRAY N, SLLSTRM E, UKEILEY L. Properties of subsonic open cavity flow fields[J]. Physics of Fluids, 2009, 21(9): 479-49.

PDF(2490 KB)

Accesses

Citation

Detail

段落导航
相关文章

/