带有双线性非线性全动舵面气动弹性的数值与试验研究

李治涛1,2,3 , 韩景龙 3,员海玮 3

振动与冲击 ›› 2020, Vol. 39 ›› Issue (19) : 234-242.

PDF(4150 KB)
PDF(4150 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (19) : 234-242.
论文

带有双线性非线性全动舵面气动弹性的数值与试验研究

  • 李治涛1,2,3 , 韩景龙 3,员海玮 3
作者信息 +

Simulation and tests for aeroelasticity of a fully moving rudder surface with bilinear nonlinearity

  • LI Zhitao1,2,3, HAN Jinglong3, YUAN Haiwei3
Author information +
文章历史 +

摘要

基于结构刚度非耦合,设计了在扭转方向存在双线性非线性的全动舵面,并对其开展了数值仿真与风洞试验研究。用接触对模拟双线性非线性,基于CFD/CSD耦合建立了该舵面数值仿真模型,考虑了初始接触刚度、触点震颤和接触摩擦力等因素。结果表明:初始接触刚度变化,对数值模拟所得极限环幅值几乎没有影响;采用接触时间控制能够有效解决触点震颤,使流固耦合模拟过程数值稳定;接触摩擦力增大,数值模拟所得极限环幅值减小;数值计算所得极限环幅值随动压的变化规律与风洞试验吻合。

Abstract

Based on non-coupling of structure stiffness, a fully moving rudder surface with bilinear nonlinearity in torsional direction was designed, and numerical simulation and wind tunnel tests were done for it. Using contact pair to simulate bilinear nonlinearity, a numerical simulation model based on CFD/CSD coupling for this control surface was established considering initial contact stiffness, contact point chattering and contact friction force, etc. factors. The study results showed that change of initial contact stiffness has little effect on the limit cycle amplitude obtained using numerical simulation; using contact time control can effectively solve contact point chattering, and make the fluid-structure interaction simulation process be numerically stable;with increase in contact friction force, the limit cycle amplitude obtained using numerical simulation decreases;the varying law of the limit cycle amplitude obtained using numerical simulation with variation of dynamic pressure agrees well with that obtained using wind tunnel tests.

关键词

气动弹性 / 风洞试验 / 双线性非线性 / 流固耦合

Key words

aeroelasticity / wind tunnel test / bilinear nonlinearity / fluid-structure interaction

引用本文

导出引用
李治涛1,2,3 , 韩景龙 3,员海玮 3. 带有双线性非线性全动舵面气动弹性的数值与试验研究[J]. 振动与冲击, 2020, 39(19): 234-242
LI Zhitao1,2,3, HAN Jinglong3, YUAN Haiwei3. Simulation and tests for aeroelasticity of a fully moving rudder surface with bilinear nonlinearity[J]. Journal of Vibration and Shock, 2020, 39(19): 234-242

参考文献

[1] LEE B H K, TRON A. Effects of structural nonlinearities on flutter characteristics of the CF-18 aircraft [J]. Journal of Aircraft, 1989, 26(8): 781—786.
[2] Policy for certification and continued airworthiness of unbalanced and mass-balanced control surfaces [S]. Federal Aviation Administration Policy Memorandum ANM-05-115 -019, Washington D C, 2007.
[3] 黄程德, 郑冠男, 杨国伟等. 基于CFD/CSD耦合含间隙三维全动舵面气动弹性研究[J].应用力学学报,2018,35(1): 1-7.
HUANG Chengde, ZHENG Guannan, YANG Guowei, et al. Aeroelastic study of a three dimensional all-movable wing with free play using CFD/CSD coupling [J]. Chinese Journal of Applied Mechanics, 2018, 35(1): 1-7.
[4] CHEN P C, LEE D H. Flight-loads effects on horizontal tail free-play-induced limit cycle oscillation [J]. Journal of Aircraft, 2008, 45(2): 478-485.
[5] KIM J Y, KIM K S, LEE I, et al. Transonic aeroelastic analysis of all-movable wing with free play and viscous effects [J]. Journal of Aircraft, 2008, 45(5): 1820-1824.
[6] TANG D, DOWELL E H. Aeroelastic response induced by free play, part 1: theory [J]. AIAA Journal, 2011, 49(11): 2532-2542.
[7] TANG D, DOWELL E H. Aeroelastic response induced by free play, part 2: theoretical/experimental correlation analysis [J]. AIAA Journal, 2011, 49(11): 2543-2554.
[8] TANG D, DOWELL E H. Computational/Experimental aeroel -astic study for a horizontal-tail model with free play [J]. AIAA Journal, 2013, 51(2): 341-352.
[9] CHEN P C, RITZ E, LINDLEY N. Nonlinear flutter analysis for the scaled F-35 with horizontal-tail free play [J]. Journal of Aircraft, 2014, 51(3): 883-889.
[10] 党会鸣. 机械结合面接触刚度研究[D]. 大连: 大连理工大学, 2015: 8-26.
DANG Huiming. The research on contact stiffness of joint surface[D]. Dalian: Dalian university of technology, 2015: 8-26.
[11] 张兵, 韩景龙, 钱凯. 超声速及高超声速壁板颤振中的湍流边界层效应[J]. 振动工程学报, 2012,26 (1): 98-104.
ZHANG B, HAN J L, QIAN K. Effects of turbulent bound -ary layer on panel flutter in supersonic and hypersonic flow [J]. Journal of Vibration Engineering, 2012, 26(1): 98-104.
[12] 陈全龙, 韩景龙, 员海玮. 前行桨叶概念旋翼动力学分析方法[J].航空学报,2014,35(9):2451-2460.
CHEN Quanlong, HAN Jinglong, YUN Haiwei. Analytical method for advancing blade concept rotor dynamics [J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2451-2460.
[13] 金伟, 钱卫, 冉玉国等. 颤振风洞试验模型弯曲-扭转刚度非耦合模拟机构.中国,发明专利,CN 104122067A[P], 2014-10-29.
JIN Wei, QIAN Wei, RAN Yuguo, et al. Simulated mechanism of bending stiffness and rotation stiffness uncouple of wind tunnel flutter test. China, Patent of Invention, CN 104122067A [P], 2014-10-29.
[14] 李治涛. 带有间隙的全动舵面气动弹性问题研究[D]. 南京: 南京航空航天大学,2017:98-113,115-116.
LI Zhitao. Research on aeroelasticity of all-movable control surface with freeplay [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 98-113, 115-116.
[15] ANSYS Inc. ANSYS contact technology guide, release 18.0[EB], ANSYS Inc., 2017.
[16] LIU L, WONG Y S, LEE B H K, et al. Nonlinear aeroelastic analysis using the point transformation method. Part 1: freeplay model [J]. Journal of Sound and Virbation, 253(2): 447-469.

PDF(4150 KB)

Accesses

Citation

Detail

段落导航
相关文章

/