球形管道内检测器压电能量收集器设计及实验研究

刘悦,李一博,芮小博,郑晓雷,黄新敬,李健

振动与冲击 ›› 2020, Vol. 39 ›› Issue (19) : 258-265.

PDF(1654 KB)
PDF(1654 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (19) : 258-265.
论文

球形管道内检测器压电能量收集器设计及实验研究

  • 刘悦,李一博,芮小博,郑晓雷,黄新敬,李健
作者信息 +

Design and tests for piezoelectric vibration energy harvesting device used by a spherical inner detector in pipeline

  • LIU Yue, LI Yibo, RUI Xiaobo, ZHENG Xiaolei, HUANG Xinjing, LI Jian
Author information +
文章历史 +

摘要

球形管道内检测器是一种新型的管道安全检测装置,但由于封闭结构中携带的电池有限,限制了其在长输管道中的应用。为了尝试解决该问题,本文提出一种压电振动能量收集结构,将旋转中的机械能转化为电能。为了对结构的性质进行分析,本文利用欧拉-拉格朗日法建立了机电耦合动力学模型。基于该模型的数值仿真与旋转平台实验,结合内检测器在管道中的旋转特征,对能量收集器进行了详细的参数设计与优化。在管道中进行了样机实验,结果证明本收集器在所设计的内检测器工作条件下,可获得12.6V的电压输出,在1.8MΩ负载下可得88.2μW的功率。

Abstract

The spherical inner detector in pipeline is a new type pipeline safety detection device, but the limited battery carried in its closed structure limits its application in long pipelines. Here, to solve this problem, a piezoelectric vibration energy harvesting device was proposed to convert mechanical energy in rotating into electric energy. Euler-Lagrange method was used to establish its electro-mechanical coupled dynamic model. Based on this model, numerical simulation and rotating platform tests were performedto analyze properties of the device. Combining with rotating characteristics of the inner detector in pipeline, the optimal parametric design was done for the energy collector. The prototype was tested in pipelines. Results showed that the designed energy harvesting device used by the inner detector in pipeline under working condition can obtain a voltage output of 12.6 V, and gain a power of 88.2 μW under a load of 1.8 MΩ.

关键词

球形检测器 / 振动能量收集 / 悬臂梁 / 最优化参数设计

Key words

spherical detector / piezoelectric vibration energy harvesting / cantilever beam / optimal parametric design

引用本文

导出引用
刘悦,李一博,芮小博,郑晓雷,黄新敬,李健. 球形管道内检测器压电能量收集器设计及实验研究[J]. 振动与冲击, 2020, 39(19): 258-265
LIU Yue, LI Yibo, RUI Xiaobo, ZHENG Xiaolei, HUANG Xinjing, LI Jian. Design and tests for piezoelectric vibration energy harvesting device used by a spherical inner detector in pipeline[J]. Journal of Vibration and Shock, 2020, 39(19): 258-265

参考文献

[1] Wang J,Zhao L,Liu T,et al. Novel negative pressure wave-based pipeline leak detection system using fiber bragg grating-based pressure sensors[J]. Journal of Lightwave Technology,2017,35:3366-3373.
[2] Ding C,Wu G D,Peng L,et al. A pipeline monitoring system based on negative pressure wave and wireless sensor[J]. Applied Mechanics and Materials,2017,865:580-585.
[3] 高丽,朱锋,司志梅. 输油管道光纤传感在线检漏监测先导试验研究[J]. 天然气与石油,2017,35(2):53-57.
 GAO Li,ZHU Feng,SI Zhimei. Study on online monitoring pilot test of pipeline leak detection transmission using optical fiber sensing technology[J]. Natural Gas and Oil,2017,35(2):53-57.
[4] 王大伟,封皓,杨洋,等. 基于Ф-OTDR光纤传感技术的供水管道泄漏辨识方法[J]. 仪器仪表学报,2017,38(4):830-837.
 WANG Dawei,FENG Hao,YANG Yang,et al. Study on leakage identification method of water supply pipeline based on Ф-OTDR optical fiber sensing technology[J]. Chinese Journal of Scientific Instrument,2017,38(4):830-837.
[5] 杨理践,耿浩,高松巍. 长输油气管道漏磁内检测技术[J]. 仪器仪表学报,2016,37(8):1736-1746.
 YANG Lijian,GENG Hao,GAO Songwei. Magnetic flux leakage internal detection technology of the long distance oil pipeline[J]. Chinese Journal of Scientific Instrument,2016,37(8):1736-1746.
[6] D Rifai,A Abdalla,R Razali,et al. An eddy current testing platform system for pipe defect inspection based on an optimized eddy current technique probe design[J]. Sensors,2017,17(3):579-603.
[7] Wissam M A,Entidhar A A,Hussain M A,et al. Applications of ultrasonic techniques in oil and gas pipeline industries: a review[J]. American Journal of Operations Research,2015,5: 274-287.
[8] Siang J, Lim M H, Salman Leong M. Review of vibration‐based energy harvesting technology: Mechanism and architectural approach[J]. International Journal of Energy Research, 2018, 42(5): 1866-1893.
[9]  Wei C, Jing X. A comprehensive review on vibration energy harvesting: Modelling and realization[J]. Renewable & Sustainable Energy Reviews, 2017, 74:1-18.
[10] Blokhina E, Galayko D. Towards autonomous microscale systems: Progress in electrostatic kinetic energy harvesting[C]// IEEE International Conference on Electronics, Circuits and Systems. IEEE, 2017:744-747.
[11] Tao K,Wu J,Tang L H,et al. Enhanced electrostatic vibrational energy harvesting using integrated opposite-charged electrets[J]. Journal of Micromechanics and Microengineering,2017,27:044002.
[12] Zou H X,Zhang W M,Li W B,et al. Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion[J]. Energy Conversion and Management,2017,148: 1391-1398.
[13] Ahmed R,Mir F, Banerjee S. A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity[J]. Smart Materials & Structures,2017,26(8):085031.
[14]  孙洪鑫,罗一帆,杨国松,等. 电磁集能式调谐质量阻尼器的结构减震及能量收集分析[J]. 振动与冲击,2017(15):51-56.
 Sun Hongxin,Luo Yifan,Yang Guosong,et al. A RETMD with performances of structural aseismic control and energy harvesting for a single-DOF structure[J]. Journal of Vibration & Shock,2017, 36(15):51-56.
[15] Jan Smilek,Zdenek Hadas,Jan Vetiska,et al. Rolling mass energy harvester for very low frequency of input vibrations[J]. Mechanical Systems and Signal Processing,2019,125: 215–228
[16] Fu H L,Yeatman E M. A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion[J]. Energy,2017,125:152-161.
[17]  Lockhart R,Janphuang P,Briand D,et al. A wearable system of micromachined piezoelectric cantilevers coupled to a rotational oscillating mass for on-body energy harvesting[C] // 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS). San Francisco:IEEE,2014. 370-373.
[18] Gu L,Livemore C. Passive self-tuning energy harvester for extracting energy from rotational motion[J]. Applied Physics Letters,2010,97:081904
[19] Guan M,Liao W H. Design and analysis of a piezoelectric energy harvester for rotational motion system[J]. Energy Conversion and Management,2016,111:239-244.
[20] 陈世利,王冬祥,郭世旭,等. 球形管道内检测器示踪定位技术[J]. 纳米技术与精密工程,2016,14(2): 87-93.
 Chen Shili,Wang Dongxiang,Guo Shixu,et al. Tracking and location technology of spherical pipeline inner detector[J]. Nanotechnology and Precision Engineering,2016,14(2): 87-93.
[21] Tang L, Yang Y. A nonlinear piezoelectric energy harvester with magnetic oscillator[J]. Applied Physics Letters, 2012, 101(9): 094102.
[22] Aboulfotoh N,Twiefel J. On developing an optimal design procedure for a bimorph piezoelectric cantilever energy harvester under a predefined volume[J]. Mechanical Systems and Signal Processing,2018,106:1-12.
[23] Rui X B,Li Y B,Liu Y,et al. Experimental study and parameter optimization of a magnetic coupled piezoelectric energy harvester[J]. Applied Sciences,2018,8(12):2609.
[24] Guo S X,Chen S L, Huang X J,et al. CFD and Experimental Investigations of Drag Force on Spherical Leak Detector in Pipe Flows at High Reynolds Number[J]. CMES: Computer Modeling in Engineering & Sciences,2014,101(1):59-80.

 

PDF(1654 KB)

Accesses

Citation

Detail

段落导航
相关文章

/