针对规范计算长度系数法无法考虑框架与剪力墙之间的相互作用、同层柱之间的相互支援以及层与层的支援作用的不足,提出了一种计算框架-剪力墙结构临界力的解析算法。利用 “三弹簧–摇摆柱”力学模型作为基本单元来计算单个框架柱的稳定承载力,进而通过基本单元(刚度和荷载)在各楼层内组装,之后再将各楼层的刚度及荷载进行楼层间的组装,将求解框架-剪力墙临界承载力转化为求解结构的楼层抗侧刚度,进而推导了可直接计算有侧移框架-剪力墙临界力的简单实用的计算公式,该公式能考虑这三种支援作用,即同层各柱间的支援作用,楼层间的相互支援作用,以及剪力墙对框架的支援作用,有效地弥补了规范尚无法求解框架-剪力墙临界力的不足。算例计算结果表明:该方法有很好的精度及准确性,可供工程设计使用。
Abstract
Aiming at the problem of the standard calculation length method not being able to consider interaction between a frame and a shear wall, mutual support between columns of the same layer and insufficient support function between layers, an analytical algorithm for calculating critical bearing force of a frame-shear wall structure was proposed. The mechanical model of "three springs-sway column" was taken as the basic element to calculate the stable bearing capacity of a single frame column. Then, basic units including stiffness and load were assembled within each floor, and then the stiffness and load of each story were assembled between floors. Solving critical bearing capacity was converted into solving the floor lateral stiffness of the structure. A simple and practical calculation formula for directly calculating critical bearing capacity of a frame-shear wall with lateral displacement was derived. It was shown that the formula can consider the three mutual supports including mutual support between the same layer’s columns, that between floors, and support from shear wall to frame to effectively makes up for the deficiency that the code can’t solve the critical bearing capacity of a frame-shear wall. Example calculation results showed that the proposed method has good accuracy and correctness for being applied in engineering design.
关键词
框架-剪力墙 /
内刚度 /
外刚度 /
临界内外刚度比系数 /
临界因子 /
临界力
{{custom_keyword}} /
Key words
frame-shear wall /
internal stiffness /
external stiffness /
critical internal and external stiffness ratio coefficient /
critical factor /
critical force
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GB 50017-2017 钢结构设计标准[S].北京:中国建筑工业出版社,2017
GB50017-2017 Standard for design of steel structures [S].Beijing: China Architecture & Building Press, 2017.
[2] Rosenblueth,E.and Holtz,I. Elastic Analysis of shear walls in tall buildings [J]. ACJJ,1960,56(12):1209-1222
[3] Chen W F, Lui E M. Stability Design of steel frames[M]. Boca Raton: CRC Press, 1991: 39—144.
[4] Rosman R. Stability and dynamics of shear-wall frame structures [J]. Building Science,vol.9,1974:55-63
[5] 童根树. 钢结构的平面内稳定[M].北京:中国建筑工业出版社,2004:146—188
Tong Genshu. In-plane stability of steel structures [M]. Beijing: China Architecture & Buil-ding Press,2004: 146— 188
[6] Chen W F, Atsuta T. Theory of beam-columns(Vol.1:In plane behavior and design)[M]: New York:McGraw-Hill, 1976: 510—513.
[7] 耿旭阳,周东华.确定受压柱计算长度的通用图表[J].工程力学,2014,31(8):154—160
Geng Xuyang, Zhou Donghua. Universal charts for determining the effective length of compres- sion columns [J]. Engineering Mechanics, 2014,31(8):154—160
[8] 郝际平,田炜烽.多层有侧移框架整体稳定的简便计算方法[J].建筑结构学报,2011,32(11):183~188
Hao Jiping, Tian Weifeng. Simple calculation method for overall stability of multi-story sway frame [J]. Journal of Building Structures, 2011,32(11):183—188
[9] Lohse,Gunther. Knicken und Spannungsberechn- ung nach Theorie II.Ordnung[M].Werner-Verlag GmbH Düsseldorf,1978:5—15
[10] Adolf Lubbertus Bouma.Mechanik schlanker Tragwerke: ausgewählte beispiele der praxis[M]. Springer-Verlag Berlin Heidelberg,1993:41-50.
[11] 慕青松.考虑压缩效应的简支弹性杆受压屈曲的理论分析[J].工程力学,2013,30(11):185—192
Mu Qingsong. Theoretic analysis on the buckling of a simply supported compressible elastic rod under the axial pressure [J]. Engineering Mechanics, 2013,30(11):185—192
[12] 包世华.新编高层建筑结构[M].北京:中国水利水电出版社,2013:168—190
Bao Shihua. New tall building structure [M]. Beijing: China Waterpower Press, 2013: 168—190
[13] 兰树伟,周东华,双超等.有侧移框架临界承载力的实用计算方法[J].振动与冲击,2019,38(11):180—187
Lan Shuwei, Zhou Donghua, Shuang chao et al. Practical calculation method for the critical bearing capacity of sway frame [J]. Journal of vibration and shock, 2019,38(11):180—187
[14] 曾宪桃, 樊友景. 结构力学上册[M]. 郑州大学出版社,2008: 131-140
Zeng Xiantao, Fan Youjing. Structural mechanics [M].Zhengzhou: Zhengzhou University Press, 2008: 131-140
[15] 陈绍番.钢结构稳定设计指南[M].北京:中国建筑工业出版社,2004:146~188
Chen Shaofan. Guide to stability design of steel structures [M]. Beijing: China Architecture & Buil-ding Press,2004: 146~ 188
[16] LI Q W,ZHOU A M.A simplified method for stability analysis of multi-story frames considering vertical interactions between stories[J].Advances in Structural Engineering,2016,19(4):599-610.
[17] WEBBER A,ORR J J,SHEPHERD P,et al.The effective length of columns in multi-storey frames[J].Engineering Structures,2015,39(7):132-143.
[18] 陈健云,李静,韩进财等.地震动强度指标与框架结构响应的相关性研究[J].振动与冲击,2017,36(3):105—114
Chen Jianyun, Li Jing, Han Jincai et al. Correlation between ground motionintensity indexes and seismic responses of frame structures [J]. Journal of vibration and shock, 2017,36(3):105—114
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}