为了获取钢筋在不同应变率下的动态拉伸力学性能参数,利用动载试验机和分离式霍普金森拉杆对HRB400、HRB500高强钢筋和HTRB600、HTRB700新型高强钢筋进行了静态、快速和高速拉伸试验,试验中测得了不同应变率下的应力—应变曲线,并拟合得到动态力学性能参数。结果表明,4种钢筋的屈服强度和抗拉强度随应变率的增长均有提高,强度低的钢筋提高比例较大,屈服强度的提高比例大于抗拉强度的提高比例,弹性模量、塑性段切线模量和最大力总伸长率基本不受应变率影响。应变率的计算应区分弹性段和塑性段,基于不同的应变率计算方法可得到不同的本构模型参数,使用时应加以区别。
Abstract
In order to study dynamic tensile performance of new high-strength rebars under different strain rates, quasi-static, rapid and high-speed tension tests were conducted for high-strength rebars of HRB400 and HRB500, and new high-strength rebars of HTRB600 and HTRB700 by using dynamic load testing machine and split Hopkinson tension bar (SHTB) to measure their stress-strain curves under different strain rates, and obtain their dynamic mechanical performance parameters through fitting. Results showed that for the 4 types of rebars, their yield strength and tensile strength increase with increase in strain rate, the increase proportion of lower strength rebars is bigger, the increase proportion of yield strength is larger than that of tensile strength; elastic modulus, plastic tangent modulus and total elongation at maximum force are not influenced by strain rate basically; strain rate calculation should be divided into elastic phase and plastic one; different constitutive model parameters can be obtained with different calculation methods of strain rate, so these methods should be used differently.
关键词
新型高强钢筋 /
应变率 /
强度 /
伸长率 /
本构模型
{{custom_keyword}} /
Key words
new high-strength rebar /
strain rate /
strength /
elongation /
constitutive model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 中华人民共和国住房和城乡建设部. GB 50010-2010 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2011.
[2] Restrepo-Posada J I, Dodd L L, Park R, et al. Variables affecting cyclic behavior of reinforcing steel [J]. Journal of Structural Engineering, 1994, 120(11): 3178-3196.
[3] Rohr I, Nahme H, Thoma K. Material characterization and constitutive modeling of ductile high strength steel for a wide range of strain rates [J]. International Journal of Impact Engineering, 2005, 31(4): 401-433.
[4] 陈肇元.爆炸荷载下的混凝土结构性能与设计[M]. 北京: 中国建筑工业出版社, 2015: 20-39.
[5] 钱七虎, 王明洋. 高等防护结构计算理论[M]. 南京: 江苏科学技术出版社, 2009: 8-12.
[6] 林峰, 顾祥林, 匡昕昕, 等. 高应变率下建筑钢筋的本构模型[J]. 建筑材料学报, 2008, 11(1): 14-20.
LIN Feng, GU Xianglin, KUANG Xinxin, et al. Constitutive models for reinforcing steel bars under high strain rates [J]. Journal of Building Materials, 2008, 11(1): 14-20.
[7] 李敏, 李宏男. 建筑钢筋动态试验及本构模型 [J]. 土木工程学报, 2010, 43(4): 70-75.
LI Min, LI Hongnan. Dynamic test and constitutive model for reinforcing steel [J]. China Civil Engineering Journal,2010, 43(4): 70-75.
[8] 黄晓莹, 陶俊林. 三种建筑钢筋材料高应变率下拉伸力学性能研究 [J]. 工程力学, 2016, 33(7): 184-189.
HUANG Xiaoying, TAO Junlin. Tensile mechanical properties research of three construction steel bars in high strain rate [J]. Engineering Mechanics, 2016, 33(7): 184-189.
[9] 肖建庄, 代媛媛, 赵勇, 等. 500MPa细晶粒钢筋高温下的应力-应变关系[J]. 建筑材料学报, 2008, 11(3):276-282.
XIAO Jianzhuang, DAI Yuanyuan, ZHAO Yong, et al. Stress-strain relationship of HRBF500 at high temperatures [J]. Journal of Building Materials,2008, 11(3):276-282.
[10] 管俊峰, 张谦, 王伟夙, 等. 600MPa级新型高强抗震钢筋的混凝土梁抗裂性能研究[J]. 混凝土, 2016 (7): 49-52.
GUAN Junfeng, ZHANG Qian, WANG Weisu, et al. Resistance against cracking of reinforced concrete beams with 600MPa seismic steelbar [J]. Concrete, 2016 (7): 49-52.
[11] 程远征, 刘建湖, 潘建强, 等. 金属材料动态力学参数试验获取方法[J]. 中国测试, 2016, 42(10): 107-112.
CHENG Yuanzheng, LIU Jianhu, PAN Jianqiang, et al. Experiment method of deriving the dynamic mechanical parameters of metal materials [J]. China Measurement & Test, 2016, 42(10): 107-112.
[12] 谢灿军, 童明波, 刘富, 等. 7075-T6铝合金动态力学试验及本构模型研究[J]. 振动与冲击, 2014, 33(18): 110-114.
XIE Canjun, TONG Mingbo, LIU Fu, et al. Dynamic tests and constitutive model for 7075-T6 aluminum alloy[J]. Journal of Vibration and Shock, 2014, 33(18): 110-114.
[13] 惠旭龙, 牟让科, 白春玉, 等. TC4钛合金动态力学性能及本构模型研究[J]. 振动与冲击, 2016, 35(22): 161-168.
HUI Xulong, MU Rangke, BAI Chunyu, et al. Dynamic mechanical property and constitutive model for TC4 titanium alloy[J]. Journal of Vibration and Shock, 2016, 35(22): 161-168.
[14] 惠旭龙, 白春玉, 葛宇静, 等. 2A16 铝合金中应变率力学性能研究[J]. 振动与冲击, 2017, 36(19): 66-70.
HUI Xulong, BAI Chunyu, GE Yujing, et al. Dynamic properties of 2A16 aluminum alloy under intermediate strain rate[J]. Journal of Vibration and Shock, 2017, 36(19): 66-70.
[15] Ling Y. Uniaxial true stress-strain curve after necking [J]. AMP Journal of Technology, 1996, 5(1):36-48.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}