为了研究柱体结构的涡激振动特性预测方法,首先基于Van der Pol尾流振子模型建立了弹性支撑单自由度柱体的涡激振动模型。然后基于计算流体力学(CFD)方法、结构动力学理论以及嵌套网格技术,同时考虑弹性支撑柱体来流向和横向振动,建立了柱体结构的涡激振动高保真仿真模型。通过与国外文献实验数据对比,验证了两种模型的准确性。计算结果表明,在低质量比情况下,Van der Pol尾流振子模型在约化速度较小区域计算误差很大,在柱体振幅最大值附近误差较小,基本上可以捕捉到柱体的涡激振动特性,可以用于工程上快速预测柱体结构的涡激振动特性;在低质量比、高质量比以及指定的约化速度范围内,采用CFD方法和嵌套网格技术,可以避免由于柱体振幅较大引起的网格畸变和负网格问题,且可以获得较好的计算精度和详细的流场信息,但计算效率相比Van der Pol尾流振子模型较低。
Abstract
In order to study a prediction method for vortex-induced vibration (VIV) characteristics of a cylinder structure, the VIV model of a single-DOF elastically supported cylinder was established based on Van der Pol wake oscillator model firstly. Then, based on the computational fluid dynamics (CFD) method and the overset mesh technique, considering simultaneously incoming flow direction vibration and transverse one of the elastically supported cylinder, the hi-fi simulation model for VIV of the cylinder structure was established. The simulation results were compared with the test data published in abroad reference to verify the correctness of the two models. The simulation results showed that in cases of low mass ratio, the calculation error of Van der Pol wake oscillator model is very large in fields with a smaller reduction velocity, while this error is smaller in fields near the maximum amplitude of the cylinder to basically capture VIV characteristics of the cylinder, and Van der Pol wake oscillator model can be used to rapidly predict VIV characteristics of cylinder structures in engineering; within ranges of low mass ratio, high mass ratio and specified reduction speed, using CFD method and overset mesh technique can avoid mesh distortion and negative mesh problems caused by larger vibration amplitude of the cylinder, and obtain better calculation accuracy and detailed flow field information, but the calculation efficiency is lower than that of Van der Pol wake oscillator model.
关键词
柱体结构 /
涡激振动 /
Van der Pol尾流振子模型 /
计算流体力学 /
嵌套网格
{{custom_keyword}} /
Key words
cylinder structure /
vortex-induced vibration (VIV) /
Van der Pol wake oscillator model /
computational fluid dynamics (CFD) /
overset mesh
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Stappenbelt B, Lalji F, Tan G. Low mass ratio vortex-induced motion[C]. The 16th Australasian Fluid Mechanics Conference, Australasian, 2007:1491-1497.
[2]Khalak A, Williamson C H K. Fluid forces and dynamics of a hydroelastic structure with very low mass and damping[J]. Journal of Fluids and Structures, 1997, 11(8): 973-982.
[3]Pan Z Y, Cui W C, Miao Q M. Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using RANS code[J]. Journal of Fluids & Structures, 2007, 23(1):23-37.
[4]Mehmood A, Nayfeh A H, Hajj M R. Effects of a non-linear energy sink (NES) on vortex-induced vibrations of a circular cylinder[J]. Nonlinear Dynamics, 2014, 77(3): 667-680.
[5] 袁昱超, 薛鸿祥, 唐文勇. 考虑轴向张力时变效应的圆柱体涡激振动响应特性研究[J].振动与冲击, 2019, 38(9): 80-87.
Yuan Yucha, Xue Hongxiang, Tang Wenyong. Response characteristics of a cylinder’s VIV considering time-varying axial tension effect. JOURNAL OF VIBRATION AND SHOCK, 2019, 38(9): 80-87.
[6]张杰. 深海立管参激-涡激联合振动与疲劳特性研究[D]. 天津:天津大学, 2014.
Zhang Jie. Vortex-induced vibration and fatigue analysis of deepwater risers considering parametric excitations [D]. Tianjing: Tianjing University,2014.
[7]赵婧. 海洋立管涡致耦合振动CFD数值模拟研究[D]. 青岛:中国海洋大学, 2012.
Zhao Jing. Numerical Simulation on Vortex-induced vibrations with Fluid-structure interaction for risers[D]. Qingdao: Ocean University of China,2012.
[8]宋芳, 林黎明, 凌国灿. 圆柱涡激振动的结构-尾流振子耦合模型研究[J]. 力学学报, 2010, 42(3):357-365.
Song Fang, Lin Liming, Ling Guocan. The study of Vortex-induced vibrations by computation using coupling model of structure and wake oscillator[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3):357-365.
[9]Iwan W D. The vortex-induced oscillation of non-uniform structural systems[J]. Journal of Sound & Vibration, 1981, 79(2):291-301.
[10]Chen D Y, Abbas L K, Wang G P, et al. Numerical study of flow-induced vibrations of cylinders under the action of nonlinear energy sinks (NESs)[J]. Nonlinear Dynamics, 2018: 1-33.
[11]Lucor D, Foo J, Karniadakis G E. Vortex mode selection of a rigid cylinder subject to VIV at low mass-damping[J]. Journal of Fluids and Structures, 2005, 20(4): 483-503.
[12]Bahmani M H, Akbari M H. Effects of mass and damping ratios on VIV of a circular cylinder[J]. Ocean Engineering, 2010, 37(5-6): 511-519.
[13]Zhang B, Song B, Mao Z, et al. Numerical investigation on VIV energy harvesting of bluff bodies with different cross sections in tandem arrangement[J]. Energy, 2017, 133: 723-736.
[14]Carrica P M, Wilson R V, Noack R W, et al. Ship motions using single-phase level set with dynamic overset grids[J]. Computers & fluids, 2007, 36(9): 1415-1433.
[15]Carrica P M, Castro A M, Stern F. Self-propulsion computations using a speed controller and a discretized propeller with dynamic overset grids[J]. Journal of marine science and technology, 2010, 15(4): 316-330.
[16]Strawn R C, Duque E P N, Ahmad J. Rotorcraft Aeroacoustics Computations with Overset‐Grid CFD Methods[J]. Journal of the American Helicopter Society, 1999, 44(2): 132-140.
[17]李骏, 李威. 基于SST k-ω湍流模型的二维圆柱涡激振动数值仿真计算[J]. 舰船科学技术, 2015, 37(2):30-34.
Li Jun, Li Wei. Numerical simulation of vortex-induced vibration of a two-dimensional circular cylinder based on the SST k-ω turbulent model [J]. Ship science and technology, 2015, 37(2):30-34.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}