基于快速谱峭度和正交匹配追踪算法的轴承故障诊断方法

王海明1,2,刘永强1,2,廖英英2,3

振动与冲击 ›› 2020, Vol. 39 ›› Issue (19) : 78-83.

PDF(1134 KB)
PDF(1134 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (19) : 78-83.
论文

基于快速谱峭度和正交匹配追踪算法的轴承故障诊断方法

  • 王海明1,2,刘永强1,2,廖英英2,3
作者信息 +

Fault diagnosis method for rolling bearings based on fast spectral kurtosis and orthogonal matching pursuit algorithm

  • WANG Haiming1,2, LIU Yongqiang1,2, LIAO Yingying2,3
Author information +
文章历史 +

摘要

针对快速谱峭度在低信噪比情况下诊断效果差的问题,提出了一种基于正交匹配追踪(OMP)算法的滚动轴承故障诊断新方法。该方法通过快速谱峭度图确定最优滤波器参数对信号进行滤波,利用故障信号在傅里叶稀疏基下的稀疏度已知的特点,对滤波信号的包络信号在傅里叶稀疏基下用OMP算法对轴承振动信号的包络信号进行重构,以减少噪声和其他无关成分的影响,最后对重构信号进行频谱分析获取轴承故障特征。通过轴承故障仿真数据、实验台故障轴承外圈和内圈试验数据的检验,验证了本方法的有效性和可行性。

Abstract

Aiming at the diagnosis effect of fast spectral kurtosis in cases of low signal-to-noise ratio being poor, a new method for rolling bearing fault diagnosis based on fast spectral kurtosis and orthogonal matching pursuit (OMP) algorithm was proposed. The optimal filter parameters were determined with fast spectral kurtosis graph, and then signals were filtered with the optimal filter. Based on the known sparsity of fault signals under Fourier sparse basis, the envelope signal of the filtered signals under Fourier sparse basis was used to reconstruct the envelope signal of bearing vibration signals to reduce influences of noise and other irrelevant components. Finally, spectral analysis was conducted for the reconstructed signal to obtain bearing fault characteristics. Bearing fault simulation data and test data of faulty bearing’s outer and inner rings on platform verified the effectiveness and feasibility of the proposed method.

关键词

滚动轴承 / 故障诊断 / 快速谱峭度 / 正交匹配追踪 / 压缩感知

Key words

rolling bearing / fault diagnosis / fast spectral kurtosis / orthogonal matching pursuit (OMP) / compressive sensing

引用本文

导出引用
王海明1,2,刘永强1,2,廖英英2,3. 基于快速谱峭度和正交匹配追踪算法的轴承故障诊断方法[J]. 振动与冲击, 2020, 39(19): 78-83
WANG Haiming1,2, LIU Yongqiang1,2, LIAO Yingying2,3. Fault diagnosis method for rolling bearings based on fast spectral kurtosis and orthogonal matching pursuit algorithm[J]. Journal of Vibration and Shock, 2020, 39(19): 78-83

参考文献

[1] YI C, LIN J, ZHANG W, et al. Faults diagnostics of railway axle bearings based on IMF’s confidence index algorithm for ensemble EMD[J]. Sensors, 2015, 15(5): 10991-11011.
[2] CAO H, FAN F, ZHOU K, et al. Wheel-bearing fault diagnosis of trains using empirical wavelet transform[J]. Measurement, 2016, 82: 439-449.
[3] 刘永强, 杨绍普, 廖英英, 等. 一种自适应共振解调方法及其在滚动轴承早期故障诊断中的应用[J].振动工程学报, 2016, 29(2): 366-370.
LIU Yongqiang, YANG Shaopu, LIAO Yingying, et al. The adaptive resonant demodulation method and its application in failure diagnosis of rolling bearing early faults[J]. Journal of Vibration Engineering, 2016, 29(2): 366-370.
[4] 张龙, 毛志德, 杨世锡, 等. 基于包络谱带通峭度的改进谱峭度方法及在轴承诊断中的应用[J]. 振动与冲击, 2018, 37(23): 171-179.
ZHANG Long, MAO Zhide, YANG Shixi, et al. An improved Kurtogram based on band-pass envelope spectral Kurtosis with its application in bearing fault diagnosis[J]. Journal of Vibration and Shock, 2018, 37(23): 171-179.
[5] DWYER R. Detection of non-gaussian signals by frequency domain kurtosis estimation[C]. Acoustic, Speech and Signal Processing. Boston IEEE International Conference on ICASSP, 1983, 83: 607-610.
[6] SAWALHI N, RANDALL R B, ENDO H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis[J]. Mechanical Systems and Signal Processing, 2007, 21(6): 2616-2633.
[7] 苏文胜, 王奉涛, 张志新, 等. EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J]. 振动与冲击, 2010, 29(3): 18-21.
SU Wensheng, WANG Fengtao, ZHANG Zhixin, et al. The EMD de-noising and spectral kurtosis method in the diagnosis of rolling bearing early faults[J]. Journal of Vibration and Shock, 2010, 29(3): 18-21.
[8] 李宏坤, 杨蕊, 任远杰, 等. 利用粒子滤波与谱峭度的滚动轴承故障诊断[J]. 机械工程学报, 2017, 53(03): 63-72.
LI Hongkun,YANG Rui, REN Yuanjie, et al. Rolling Element Bearing Diagnosis Using Particle Filter and Kurtogram[J]. Journal of Mechanical Engineering, 2017, 53(03): 63-72.
[9] 刘建春, 胡俊锋, 熊国良, 等. 基于谱峭度和Teager能量算子的轴承故障特征增强[J]. 噪声与振动控制, 2018, 38(01): 182-187.
LIU Jianchun, HU Junfeng, XIONG Guoliang, et al. Bearing Fault Feature Enhancement Method Based on Spectral Kurtosis and Teager Energy Operator[J]. Noise And Vibration Control, 2018, 38(01): 182-187.
[10] 郭俊锋, 石斌, 雷春丽, 等. 基于双稀疏字典模型机械振动信号压缩感知方法[J]. 机械工程学报, 2018, 54(06):118-127.
GUO Junfeng, SHI Bin, LEI Chunli, et al. Method of Compressed Sensing for Mechanical Vibration Signals Based on Double Sparse Dictionary Model[J]. Journal of Mechanical Engineering, 2018, 54(06): 118-127.
[11] Zhang X, Liu Z, Miao Q, et al. Bearing fault diagnosis using a whale optimization algorithm-optimized orthogonal matching pursuit with a combined time-frequency atom dictionary[J]. Mechanical Systems and Signal Processing, 2018, 107: 29-42.
[12] ANTONI J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007, 21(1): 108-124.
[13] Candes EJ, Tao T. Near-Optimal Signal Recovery From Random Projections Universal Encoding Strategies[J]. IEEE Trans-actions on Information Theory, 2006, 52(12): 5406-5425.
[14] 沈跃. 基于压缩感知理论的电力系统数据检测与压缩方法研究[D]. 江苏大学, 2012.
SHEN Yue. Data Detection and Compression Methods of Power System Based on Compression Sensing[D].Jiang Su University,2012.

PDF(1134 KB)

541

Accesses

0

Citation

Detail

段落导航
相关文章

/