考虑温度效应的橡胶混凝土阻尼耗能性能试验研究

薛刚,张宪法,曹美玲

振动与冲击 ›› 2020, Vol. 39 ›› Issue (19) : 94-100.

PDF(1054 KB)
PDF(1054 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (19) : 94-100.
论文

考虑温度效应的橡胶混凝土阻尼耗能性能试验研究

  • 薛刚,张宪法,曹美玲
作者信息 +

Tests for damping energy-dissipation performance of rubber concrete considering temperature effect

  • XUE Gang, ZHANG Xianfa, CAO Meiling
Author information +
文章历史 +

摘要

为探讨橡胶混凝土材料的阻尼耗能性能,在常温和低温条件下,橡胶粒径为20目、四种橡胶掺量的混凝土棱柱体试块进行轴向压-压滞回试验,得到了橡胶混凝土材料力-位移滞回曲线,据此分析橡胶混凝土材料阻尼耗能性能的变化规律。结果表明,低温作用后,橡胶混凝土材料压-压滞回曲线趋于饱满,耗能性能明显增大;加载力幅值水平越大,橡胶混凝土的阻尼损耗因子越大,低温下的提高幅度小于常温情况;随着橡胶掺量的增加,橡胶混凝土在低温下的滞回总耗能增长速率高于常温情况;橡胶掺量越大,其阻尼损耗因子提高的速率越显著。

Abstract

In order to investigate damping energy-dissipation performance of rubber concrete materials, under normal temperature and low temperature conditions, axial compression-compression hysteresis tests were conducted for concrete prism test blocks with rubber particle size of 20 mesh and 4 rubber contents to obtain rubber concrete materials’ force-displacement hysteresis curves, and analyze variation laws of damping energy-dissipation performance of rubber concrete materials. Results showed that after action of low temperature, compression-compression hysteresis curves of rubber concrete tend to be full, its energy-dissipation performance grows obviously; the larger the loading level, the larger the damping loss factor of rubber concrete, its increasing range at low temperature is less than that at normal temperature; with increase in rubber content, the hysteretic total energy-dissipation growth rate of rubber concrete at low temperature is higher than that at normal temperature; the larger the rubber content, the more significant the increase rate of damping loss factor.

关键词

橡胶混凝土 / 低温 / 阻尼 / 耗能

Key words

rubber concrete / low temperature / damping / energy-dissipation

引用本文

导出引用
薛刚,张宪法,曹美玲. 考虑温度效应的橡胶混凝土阻尼耗能性能试验研究[J]. 振动与冲击, 2020, 39(19): 94-100
XUE Gang, ZHANG Xianfa, CAO Meiling. Tests for damping energy-dissipation performance of rubber concrete considering temperature effect[J]. Journal of Vibration and Shock, 2020, 39(19): 94-100

参考文献

[1] Thomas B S, Gupta R C. A comprehensive review on the applications of waste tire rubber in cement concrete[J]. Renewable and Sustainable Energy Reviews, 2016, 54(Feb): 1323-1333.
[2] 覃峰,马福荣,杨胜坚,等. 橡胶集料改性水泥混凝土路面试验路段的应用研究[J]. 公路,2010,(11):95-101.
QIN Feng,MA Furong, YANG Shengjian,et al. Application Research on Test Section of Rubber Powder Modified Cement Concrete Pavement[J]. Highway, 2010, (11): 95-101.
[3] 梅大鹏. 废旧轮胎带道路工程中的应用[J]. 中国轮胎资源综合利用,2017, 08(008):31-34.
MEI Dapeng. Application of waste tire belt road engineering[J]. China Resources Comprehensive Utilization, 2017, 08 (008): 31-34.
[4] 何亮,黄勇,冯畅,马育. 橡胶混凝土性能及胶粉表面改性研究进展[J]. 硅酸盐通报,2018,37(8):2483-2488.
HE Liang, HUANG Yong, FENG Chang, MA Yu. Research progress on properties of rubber concrete and surface modification of rubber powder[J]. Bulletin of the Chinese Ceramic Society, 2018,37(8): 2483-2488.
[5] Bisht K, Ramana P V. Evaluation of mechanical and durability properties of crumb rubber concrete[J]. Construction and Building Materials, 2017, 155(Nov.30): 811-817.
[6] Gupta T, Tiwari A, Siddique S, et al. Response Assessment under Dynamic Loading and Microstructural Investigations of Rubberized Concrete[J]. Journal of Materials in Civil Engineering, 2017, 29(8): 1-15.
[7] 文捷,王元丰. 素混凝土轴压构件单位体积材料耗能公式建立[J]. 北京交通大学学报,2008,32(1):79-82.
WEN Jie, WANG Yuanfeng. Energy consumption formula of unit volume material for plain concrete axial compression members[J]. Journal of Beijing Jiaotong University, 2008, 32(1): 79-82.
[8] Silva C W D. 振动阻尼、控制和设计[M]. 北京:机械工业出版社,2013:1-3.
Silva C W D. Vibration Damping,Control,and Design[M]. Beijing: China Machine Press,2013: 1-3.
[9] 袁勇,郑磊. 橡胶混凝土动力性能试验研究[J]. 同济大学学报(自然科学版),2008,36(9):1186-1190.
YUAN Yong, ZHRNG Lei. Experimental Study on Dynamic Properties of Rubberized Concrete[J]. Journal of Tongji University(Natural Science), 2008, 36(9): 1186-1190.
[10] 梁超锋,刘铁军,邹笃建,等. 再生混凝土材料阻尼性能研究[J]. 振动与冲击,2013,32(9):160-164.
LIANG Chaofeng, LIU Tiejun, ZHOU Dujian,et al. Damping capacity of recycled concrete[J]. Journal of Vibration and Shock, 2013,32(9): 160-164.
[11] 白文琦,吕晶. 橡胶轻骨料混凝土阻尼性能试验[J]. 长安大学学报(自然科学版)2018,38(3):27-33.
BAI Wenqi, LV Jing. Experimental on damping capacity of rubber lightweight aggregate concrete[J]. Journal of Chang'an University(Natural Science Edition) 2018, 38(3): 27-33.
[12] Skripkiunas G, Grinys A, Miskinis K. Damping properties of concrete with rubber waste additives[J]. Materials Science, 2009, 15(3): 267-272.
[13] L Zheng, X Sharon Hu, Y Yuan.Experimental investigation on dynamic properties of rubberized concrete[J].Construction and Building Materials, 2008, 22(5): 939–947.
[14] 李伟龙. 橡胶集料混凝土耗能性能的试验研究及其在桥增防撞中的应用[D]. 北京:北京交通大学,2015.
LI Weilong. Experimental study on energy dissipation performance of rubber aggregate concrete and its application in bridge anti-collision[D]. Bei Jing: Beijing Jiaotong University, 2015.
[15] 李鹏飞. 应力相关阻尼模型及其在梁式桥动力分析中的应用[D]. 北京:北京交通大学,2014.
LI Pengfei. Stress-dependent damping model and its application to dynamic analysis of beam bridges[D]. Bei Jing: Beijing Jiaotong University, 2015.
[16] 张楠,廖娟,戢文占,等.混凝土低温力学性能及试验方法[J]. 硅酸盐学报,2014,42(11):1404-1408.
ZHANG Nan, LIAO Juan, JI Wenzhan,et al. Low temperature mechanical properties and test methods of concrete[J]. Bulletin of the Chinese Ceramic Society, 2014, 42(11): 1404-1408.

PDF(1054 KB)

Accesses

Citation

Detail

段落导航
相关文章

/