基于改进云图法的高土石坝抗震可靠度分析

靳聪聪1,2,迟世春1,2,李士杰3,聂章博1,2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (2) : 169-177.

PDF(1805 KB)
PDF(1805 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (2) : 169-177.
论文

基于改进云图法的高土石坝抗震可靠度分析

  • 靳聪聪1,2,迟世春1,2,李士杰3,聂章博1,2
作者信息 +

Seismic reliability analysis of high earth-rock fill dams based on an improved cloud method

  • JIN Congcong1,2,CHI Shichun1,2,LI Shijie3,NIE Zhangbo1,2
Author information +
文章历史 +

摘要

高土石坝抗震可靠度研究对大坝抗震防灾和震害风险研究具有重要意义。通过考虑地震动和筑坝料参数双重随机性,建立基于地震易损性和地震峰值加速度概率密度函数的高土石坝抗震可靠度模型,为研究不同设计使用年限的高土石坝抗震可靠度提供依据。通过拉丁抽样方法选取筑坝料参数样本并与选择地震动组合成样本对,选取坝顶相对震陷率作为性能参数,提出考虑抗震设防标准的高土石坝性能水平了;采用SWANDYNE II程序进行动力计算,并根据改进云图法得到不同地震峰值加速度下坝顶相对震陷率的地震易损性三维曲面;结合糯扎渡高土石坝不同设计年限的概率分布函数与地震易损性曲面,确定不同设计年限失效概率和抗震可靠度。分析结果表明:随着设计使用年限增加,大坝各个性能水平可靠度不断减小,对于严重破坏状态下不同设计年限可靠度均能满足《水利水电工程结构可靠性设计统一标准》规范要求,说明糯扎渡高土石坝在变形方面抗震设计是合理的。

Abstract

The seismic reliability of high earth-rockfill dams is of very significance in the study of earthquake resistance, disaster prevention and risk assessment of earthquake damage of dams.Considering the double randomness on seismic ground motions and dam material parameters, a seismic reliability model for high earth-rockfill dams based on seismic fragility and the probability density function of peak acceleration was established, which provides a basis for the seismic reliability estimation of high earth-rockfill dams with different design working life.The samples of dam material parameters were selected by Latin sampling method and combined with selected ground motions to compose sample pairs.The crest relative seismic settlement was selected as the performance parameter and the fragility performance level considering the seismic fortification standard was proposed.Then, the SWANDYNE II program was utilized to calculate the dynamic responses of the dam.By virtue of an improved cloud method, the seismic fragility 3D surface of the crest relative seismic settlement under different peak acceleration was obtained.According to the probability distribution function of the Nuozhadu high earth-rockfill dam with different design years and the seismic fragility surface, the failure probability and seismic reliability of the dam with different design years were determined.The analysis results illustrate that with the increase of design working life, the seismic reliability of each performance level of the Nuozhadu dam decreases continuously, and the reliability of the dam with different design life can all satisfy the requirements of the unified standard for the reliability design of hydraulic and hydropower engineering structures in the condition of serious damage.The seismic reliability analysis of the Nuozhadu high earth-rockfill dam indicates that its seismic design is reasonable from the viewpoint of deformation.

关键词

抗震可靠度 / 概率密度函数 / SWANDYNE II程序 / 改进云图法

Key words

seismic reliability / probability density function / SWANDYNE II program / improved cloud method

引用本文

导出引用
靳聪聪1,2,迟世春1,2,李士杰3,聂章博1,2. 基于改进云图法的高土石坝抗震可靠度分析[J]. 振动与冲击, 2020, 39(2): 169-177
JIN Congcong1,2,CHI Shichun1,2,LI Shijie3,NIE Zhangbo1,2. Seismic reliability analysis of high earth-rock fill dams based on an improved cloud method[J]. Journal of Vibration and Shock, 2020, 39(2): 169-177

参考文献

[1]王富强,刘超,周建平,杨泽艳.我国高土石坝抗震安全研究进展[J].水电与抽水蓄能,2017,3(02):33-37.
WANG Fuqiang,LIU Chao,ZHOU Jianping,YANG Zeyan .Review of Seismic Safety Study on High Earth-rockfill Dam in China[J]. Hydropower and Pumped Storage,2017,3(02):33-37.
[2]吕小龙,迟世春. 基于变形控制标准的高土石坝地震可靠度分析[J].岩土工程学报, 2019, 41(03):519-525.
LV Xiaolong,CHI Shichun. Seismic reliability analysis of high earth-rockfill dams based on
deformation control criteria [J]. Chinese Journal of Geotechnical Engineering,2019,41(03):519-525.
[3]陈厚群,徐泽平,李敏.汶川大地震和大坝抗震安全[J].水利学报.2008,39(10):1158-1167
CHEN Hou-qun,XU Ze-ping,LEE Min. Wenchuan Earthquake and seismic safety of large dams Journal of Hydraulic Engineering.2008,39(10):1158-1167
[4]周建平,杜效鹄,周兴波,王富强.世界高坝研究及其未来发展趋势[J].水力发电学报,2019,38(02):1-14.
ZHOU Jianping,DU Xiaohu,ZHOU Xingbo,WANG Fuqiang. Research on high dams and developing trends[J].Journal of Hydroelectric Engineering,2019,38(02):1-14.
[5]陈厚群. 汶川地震后对大坝抗震安全的思考[J]. 中国工程科学,2009, 11(6): 44-53.
Chen Houqun. Consideration on seismic safety of dams in China after the Wenchuan Earthquake. [J]. Engineering Sciences, 2009, 11(6): 44-53.
[6]Tae-Hyung Lee, Khalid M. Mosalam. Probabilistic seismic evaluation of reinforced concrete structural components and systems[R]. University of California, Berkeley, 2005.
[7]Kim S H,Shinozuka M. Development of fragility curves of bridges retrofitted by column jacketing[J]. Probabilistic Engineering Mechanics,2004,19(1-2):105-112.
[8]Alembagheri M,Ghaemian M. Damage assessment of a concrete arch dam through nonlinear incremental dynamic analysis[J]. Soil Dynamics and Earthquake Engineering,2013,44: 127-137.
[9]Lupoi A,Callari C. A probabilistic method for the seismic assessment of existing concrete gravity dams[J]. Structure and Infrastructure Engineering,2012,8(10): 985-998.
[10]张楚汉,金峰,王进廷,等.高混凝土坝抗震安全评价的关键问题与研究进展[J].水利学报,2016,03:253-264.
Zhang Chu-han,Jin Feng,Wang Jin-ting,etal. Key issues and developments on seismic safety evaluation of high concrete dams[J]. Journal of Hydraulic Engineering,2016,03:253-264. (in Chinese))
[11]孔宪京,庞锐,邹德高,徐斌,周扬.基于IDA的高面板堆石坝抗震性能评价[J].岩土工程学报,2018,40(06):978-984.
[12]Singh R,Roy D,Das D. A correlation for permanent earthquake-induced deformation of earth embankments[J]. Engineering Geology,2007,90(3-4): 174-185.
[13]Swaisgood J R. Embankment dam deformations caused by earthquakes[C]//Pacific conference on earthquake engineering. 2003
[14]刘君,刘博,孔宪京.地震作用下土石坝坝顶沉降估算[J].水力发电学报,2012,31 (02) :183-191.
LIU Jun,LIU Bo,KONG Xianjing. Estimation of earthquake-induced crest settlements of earth and rockfill dams[J]. Journal of Hydroelectric Engineering,2012,31(02):183-191.
[15]陈生水,李国英,傅中志.高土石坝地震安全控制标准与极限抗震能力研究[J].岩土工程学报,2013,35(01):59-65.
CHEN Shengshui,LI Guoying,FU Zhongzhi. Safety criteria and limit resistance capacity of high earth-rock dams subjected to earthquakes[J]. Chinese Journal of Geotechnical Engineering,2013,35(01):59-65.
[16]朱晟.土石坝震害与抗震安全[J].水力发电学报,2011,30(06):40-51.
ZHU Sheng .Earthquake-induced damage and aseismic safety of earth-rock dam[J]. Journal of Hydroelectric Engineering,2011,30(06):40-51.
[17]靳聪聪,迟世春,聂章博.考虑地震波随机性及水位影响的高土石坝易损性研究[J].振动与冲击,2019(06):67-74+107.
JIN Congcong,CHI Shichun,NIE Zhangbo. Seismic fragility assessment of high earth-rockfill dams considering the seismic wave randomness and water level [J].Journal of Vibration and Shock,2019(06):67-74+107.
[18]Mackie K,Stojadinović B. Probabilistic seismic demand model for California highway bridges[J]. Journal of Bridge Engineering,2001,6(6): 468-481.
[19]Vamvatsikosa D,Cornell CA. Applied incremental dynamic analysis [J]. Earthquake Spectra, 2004,20(2): 523-553.
[20] Mackie K R,Stojadinovic B. Comparison of incremental dynamic,cloud and stripe methods for computing probabilistic seismic demand models [C]// Proceedings of the Structures Congress. New York,USA,American Society of Civil Engineers (ASCE),2005: 1-11.
[21]吕大刚,于晓辉,王光远. 基于改进云图法的结构概率地震需求分析[J]. 世界地震工程,2010,20(1): 7-15.
Lv Dagang,Yu Xiaohui,Wang Guangyuan. Probabilistic seismic demand analysis of structures  based on an improved cloud method [J]. World Earthquake Engineering,2010,20(1): 7-15. (in Chinese)
[22]Kwon O S,Elnashai A. The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure [J].Engineering Structures 2006,28(2): 289-303.
[23]Cornell C A,Jalayer F,Hamburger R O,et al. Probabilistic basis for 2000 Emergency Management Agency steel moment frame guidelines[J]. Journal of Structural 2002,128(4):526-533. SAC Federal Engineering。
[24]Mackie K, Stojadinovic B. Seismic demands for performance-based design of bridges. Berkeley: Pacific Earthquake Engineering Research Center, College of Engineering, University of California, 2003,1-113
[25]Zienkiewicz O C,Mroz Z. Generalized plasticity formulation and applications to geomechanics [J]. Mechanics of engineering materials, 1984, 44(3): 655-680.
[26]Ling H I,Liu H. Pressure-level dependency and densification behavior of sand through generalized plasticity model[J]. Journal of Engineering Mechanics,2003,129(8): 851-860.
[27]刘恩龙,陈生水,李国英,米占宽,韩华强.循环荷载作用下考虑颗粒破碎的堆石体本构模型[J].岩土力学,2012,33(07):1972-1978.
LIU En-long,CHEN Sheng-shui,LI Guo-ying,MI Zhan-kuan,HAN Hua-qiang. A constitutive model for rockfill materials incorporating grain crushing under cyclic loading[J].Rock and Soil Mechanics,2012,33(07):1972-1978.
[28]Li, Hong-en, P. Manuel, and Tongchun Li. Application of an generalized plasticity model to ultra-high rockfill dam. Proceedings of the 12th International Conference on Engineering, Science, Construction, and Operations in Challenging Environments-Earth and Space. 2010.
[29]Chan A. User manual for Diana Swandyne II. Department of Civil Engineering,Glasgow University.
[30]Chan A. User Manual for SM2D-Soil Model Tester for 2-Dimensional Application [Z]. School of Civil Engineering,University of Birmingham,December,Birmingham,1995.
[31] 沈怀至, 金峰, 张楚汉. 基于性能的重力坝-地基系统地震易损性分析[J]. 工程力学, 2008, 25(12): 86-91.
SHEN Huaizhi, JIN Feng, ZHANG Chuhan. Performance-based seismic fragility analysis of concretegravity analysis of concrete gravity-foundation system[J]. Engineering Mechanics, 2008, 25(12): 86-91. (in Chinese)
[32]Padgett J E,Nielson, B G, DesRoches R. Selection of Optimal intensity Measures in Probabilistic Seismic Demand Models of Highway Bridge Portfolios[J].Earthquake Engineering and Structural Dynamics,2008,37(5):71 1-726.
[33]ATC. Earthquake Damage Evaluation Data for California[R]. Applied Technology Council report,ATC-13,1985.
[34]生命线工程地震破坏等级划分(GB/T 24336-2009)[S].北京:人民交通出版社,2009.
Seismic damage hierarchies of lifeline engineering(GB/T 24336-2009)[S].Beijing: People’s Transportation Press,2009.
[35]梁海安.土石坝震害预测及快速评估方法研究[D].中国地震局工程力学研究所,2012.
Jing Liping. Seismic Damage Prediction and Emergency Assessment of Earth-rock Dam[D]. Institute of Engineering Mechanics,China Earthquake administration
[36]王琪,朱晟,冯燕明. 基于性能的高土石坝抗震风险分析[J].水力发电,2016,42(04): 57-60.
WANG Qi,ZHU Sheng,FENG Yanming. Seismic Risk Analysis of High Earth-rock Dam Based on Performance[J]. Water Power,2016,42(04): 57-60.
[37]赵剑明, 刘小生, 陈宁等. 高心墙堆石坝的极限抗震能力研究[J].水力发电学报, 2009, 28(5): 97-102.
ZHAO Jianming,LIU Xiaosheng,CHEN Ning,et al. Research on the maximum anti-seismic capability of high earth core rock-fill dam[J]. Journal of Hydroelectric Engineering,2009,28(5): 97-102.
[38]邵磊,迟世春,李红军,温州.高心墙堆石坝极限抗震能力初探[J].岩土力学,2011,32(12):3827-3832+3838.
SHAO Lei,CHI Shi-chun,LI Hong-jun,WEN Zhou.Preliminary studies of ultimate aseismic capacity of high core rockfill dam[J] Rock and Soil Mechanics,2011,32 (12):3827-3832+3838.
[39]FEMA-273.NEHRP guidelines for the seismic rehabilitation of buildings [R].Federal Emergency Management Agency.1997,Washington,D.C.
[40]Algermissen S T,Perkins D M. Probabilistic estimate of maximum acceleration in rock in the contiguous United States[R].Open-File Report,USGS,1982,82 (1033): 76-416.
[41]陈厚群,侯顺载,梁爱虎.水电工程抗震设防概率水准和地震作用概率模型[J].自然灾害学报,1993,2(2):91-98.
Chen Houqun,Hou Shunzai,Liang Aihu. Probabilistic level fortification against earthquake and probabilistic models of seismic actions for hydraulic projects[J]. Journal of Natural Disasters,1993,2(2):91-98(in Chinese)
[42]中华人民共和国住建部.GB 20199-2013 水利水电工程结构可靠性设计统一标准[S].  北京: 中国计划出版社,2013.
China Housing and Urban-rural Development. GB 50199-2013 Unified standard for reliability design of hydraulic and hydropower engineering structures[S]. Beijing: China Planning Press,2013.

PDF(1805 KB)

Accesses

Citation

Detail

段落导航
相关文章

/