航道边界形状对移动载荷激励冰层位移响应特性的影响研究

胡明勇,李宇辰,张志宏

振动与冲击 ›› 2020, Vol. 39 ›› Issue (2) : 243-248.

PDF(1258 KB)
PDF(1258 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (2) : 243-248.
论文

航道边界形状对移动载荷激励冰层位移响应特性的影响研究

  • 胡明勇,李宇辰,张志宏
作者信息 +

Influence of the boundary shape of channel on the characteristics of ice-sheet displacement response induced by a moving load

  • HU Mingyong,LI Yuchen,ZHANG Zhihong
Author information +
文章历史 +

摘要

基于欧拉-拉格朗日流体与固体耦合算法,针对移动载荷激励冰层响应问题开展了数值模拟。对均匀水深条件下的冰层位移响应进行了数值计算并与实验结果进行对比分析,发现二者获得的临界速度值、冰层位移响应波形特征以及最大下陷值都吻合较好,说明所采用的数值计算方法是可靠、有效的。针对限制水域不同航道边界形状条件下移动荷载激励冰层位移响应和载荷临界速度进行了数值模拟,得到了航道边界形状对位移响应和临界速度的影响规律,结果表明:不同截面形状直航道条件下,当矩形截面变化到梯形截面时,临界速度变小,且各速度下冰层最大下陷位移也相应变小;矩形截面形状弯曲航道条件下,临界速度仍存在,且该临界速度对应的冰层最大下陷位移幅值比直航道条件下大。

Abstract

Based on an Euler-Lagrange fluid-solid coupling algorithm, a numerical simulation on  ice sheet responses under a moving load was carried out.By comparing the calculation results in uniform water depth condition with the data in field experiments, it is found that the value of critical speed, the wave profile of ice displacement response at its critical speed and the maximum negative deflection at different speeds are consistent with the experiment results, which shows the numerical method is reliable and effective.Similar simulations in the condition of restricted water area with different boundary shapes were also carried out.The influence of channel boundary shape on the displacement response and critical speed was analysed.The results show that for straight channels with different cross section shape, when a rectangular section tranfers to a trapezoidal section, the critical speed becomes lower, and the maximum depression displacement of the ice sheet will decrease at various speed.For curved channels with rectangular section, the critical speed still exists, and the maximum depression displacement amplitude corresponding to the critical speed is larger than that of straight channels.

关键词

移动载荷 / 航道 / 冰层响应 / 临界速度

Key words

moving load / channel / ice response / critical speed

引用本文

导出引用
胡明勇,李宇辰,张志宏. 航道边界形状对移动载荷激励冰层位移响应特性的影响研究[J]. 振动与冲击, 2020, 39(2): 243-248
HU Mingyong,LI Yuchen,ZHANG Zhihong. Influence of the boundary shape of channel on the characteristics of ice-sheet displacement response induced by a moving load[J]. Journal of Vibration and Shock, 2020, 39(2): 243-248

参考文献

[1] Squire V A, Hosking R J, Kerr A D, et al. Moving loads on ice plates[M]. The Netherlands: Kluwer Academic Publishers, 1996.
[2] SQUIRE V A, LANGHORNE P J, ROBINSON W H, et al. Moving loads on sea ice[J]. Polar Record, 1987, 23(146):569-575.
[3] TAKIZAWA T. Response of a floating sea ice sheet to a steadily moving load[J]. Journal of Geophysical Research, 1988, 93: 5100-5112.
[4] SQUIRE V A, ROBINSON W H, HASKELL T G, et al. Dynamic strain response of lake and sea ice to moving loads[J]. Cold Regions Science and Technology, 1985, 11:123-139.
[5] Kozin V M, Pogorelova A V. Variation in the wave resistance of an amphibian air-cusion vehicle moving over a broken-ice land[J].  Journal of Applied Mechanics and Technical Physics,2007,48(1):80-84.
[6] Kozin V M, Pogorelova A V. Wave resistance of amphibian aircushion vehicles during motion on ice fields[J]. Journal of Applied Mechanics and Technical Physics, 2003,44(2):193-197.
[7] Zhestkaya V D,Kozin V M. Stress-deformed state of a semi-infinite Ice sheet  under the action of a moving load[J]. Journal of Applied Mechanics and Technical Physics, 1994,35(5):745-749.
[8] Pogorelova A V, Kozin V M. Motion of a load over a floating sheet in a variable-depth pool[J]. Journal of Applied Mechanics and Technical Physics, 2014,55(2):335-344.
[9] LI Yu-chen, LIU Ju-bing, HU Ming-yong, et al. Numerical modeling of ice-water system response based on Rankine   source method and finite difference method[J]. Ocean Engineering, 2017, 138:1-8.
[10] 李宇辰, 刘巨斌, 丁志勇等. 基于Rankine源法的气垫船破冰数值模拟[J]. 振动与冲击,2017,36(23):27-31.
LI Yu-chen, LIU Ju-bing, HU Ming-yong, et al. Numerical simulation of ice-breaking by air cushion vehicle based on the rankine source method[J]. Journal of Vibration and Shock, 2017, 36(23):27-31.
[11] 卢再华, 张志宏, 胡明勇等. 全垫升式气垫船破冰过程的数值模拟[J]. 振动与冲击, 2012, 31(24):148-154.
LU Zai-hua, ZHANG Zhi-hong, HU Ming-yong, et al. Numerical simulation for ice-breaking process of an amphibian air cushion vehicle[J]. Journal of Vibration and Shock, 2012, 31(24):148-154.
[12] Takizawa T. Deflection of a floating sea ice sheet induced by a moving load[J]. Cold Regions Science and Technology, 1985,11:171-180.
[13] 张志宏, 鹿飞飞, 丁志勇等. 匀速移动载荷激励浮冰层大幅响应的临界速度[J]. 华中科技大学学报(自然科学版), 2016,44(2):107-111.
   ZHANG Zhi-hong, LU Fei-fei, DING Zhi-yong et al. Critical speed of a sharp response for floating ice sheet subjected to moving load with uniform speed[J].  Journal of Huazhong University of Science and Technology(Natural Science Edition), 2016, 44(2):107-111.
[14] 张志宏, 顾建农 , 王冲 , 胡明勇 等.航行气垫船激励浮冰响应的模型实验研究[J]. 力学学报, 2014,46(5):655-664.
    ZHANG Zhi-hong,Gu Jiannong,Wang Chong,Hu Mingyong et al, Model experiment about response of floating ice sheet subjected to moving air cushion vehicle[J].Chinese Journal of Theoretical and Applied Mechanics 2014,46(5):655-664.

PDF(1258 KB)

Accesses

Citation

Detail

段落导航
相关文章

/