研究了强离心场下旋转型行波超声电机定子的动力学特性,分析了离心刚化效应对定子的影响。通过计算离心力做的功(或称为离心势能)推导出因离心刚化效应引起的附加刚度矩阵,进而得到强离心场下定子的特性矩阵(包括质量矩阵和刚度矩阵),求解得到定子的模态参数;并根据压电陶瓷的孤极区反馈的电压信号,确定了高旋环境下定子的固有频率;总结了强离心场下超声电机定子动力学特性变化规律,给出了高旋环境下超声电机的驱动控制应对策略,为高旋环境下超声电机的应用奠定基础。
Abstract
The dynamic analysis on the stator of a travelling wave type rotary ultrasonic motor in centrifugal field was carried out, and the effect of centrifugal stiffening on the stator was analyzed.The additional stiffness matrix caused by the effect of centrifugal stiffening was deduced by calculating the work done by the centrifugal force (or called centrifugal potential energy), and the characteristic matrices (including mass matrix and stiffness matrix) of the stator in centrifugal field as well as the modal parameters of the stator were obtained.Based on the voltage signal fed back from the soliton region of piezoelectric ceramics, the natural frequency of the stator in high rotation environment was determined.Finally, the dynamic characteristics of the stator in centrifugal field were summarized, and the driving strategy of the ultrasonic motor in the high rotation environment was proposed, which lays the foundation for the application of the ultrasonic motor in high rotation environment.
关键词
超声电机 /
离心刚化效应 /
动力学分析 /
孤极反馈
{{custom_keyword}} /
Key words
ultrasonic motor /
effect of centrifugal stiffening /
dynamic analysis /
solitary polar voltage feedback
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Ueha S, Tomikawa Y. Ultrasonic motors: theory and applications [M]. Oxford: Clarendon Press; 1993.
[2] 赵淳生. 超声电机技术与应用[M]. 北京:科学出版社,2007.
[3] Li S., Ou W., Yang M., Guo C., Lu C., Hu J. Temperature evaluation of traveling-wave ultrasonic motor considering interaction between temperature rise and motor parameters [J]. Ultrasonics 2014; 57, 159‒166.
[4] 孙栋, 王新杰, 王炅. 旋转型超声电机在冲击环境下的失效模式研究[J]. 振动与冲击, 2018, 37(9):32-36.
Dong Sun, Xinjie Wang, Jiong Wang. Failure modes for rotary ultrasonic motors under shock environment [J]. Journal of vibration and shock, 2018, 37(9):32-36.
[5] 唐玉娟, 王炅. 典型引信环境力对压电驱动器的影响研究[J]. 振动与冲击, 2013, 32(19):170-175.
Yujuan Tang, Jiong Wang. Influence of typically environment force of a fuze on a piezoelectric actuator [J]. Journal of vibration and shock, 2013, 32(19): 170-175.
[6] Theodoulis S, Wernert P. Flight dynamics & control for smart munition [J]: the isl contribution. 2017; 50(1): 15512‒15517.
[7] Kane TR, Ryan RR, Banerjee AK. Dynamic of a cantilever beam attached to a moving base [J]. J Guid Control Dyn 1987; 10(2): 139–151.
[8] Oguamanam DCD, Heppler GR. The effect of rotating speed on the flexural vibration of a timoshenko beam [J]. American Journal of Orthodontics, 1996, 3(6):626-637.
[9] Berzeri M, Shabana AA. Study of the centrifugal stiffening effect using the finite element absolute nodal coordinate formulation [J]. Multibody System Dynamics,2002; 7(4): 357–387.
[10] Hagood NWI, Mcfarland AJ. Modeling of a piezoelectric rotary ultrasonic motor [J]. IEEE Trans Ultrason Ferroelectr Freq Control 1995; 42(2): 814–828.
[11] 陈超, 赵淳生. 基于半解析法的旋转型行波超声电机定子的动态特性分析[J]. 中国机械工程, 2005, 16(21).
Chao Chen, Chunsheng Zhao. Modeling of stator of a travelling wave rotary ultrasonic motor based on semi-analytical method [J]. China Mechanical Engineering, 2005, 16(21).
[12] 李华峰. 超声波电机及其精密伺服控制系统研究[D]. 华中科技大学, 2002.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}