薄壁结构高温随机振动疲劳寿命估算方法

沙云东1,朱付磊1,赵奉同1,2,张墨涵1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (2) : 64-71.

PDF(2320 KB)
PDF(2320 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (2) : 64-71.
论文

薄壁结构高温随机振动疲劳寿命估算方法

  • 沙云东1,朱付磊1,赵奉同1,2,张墨涵1
作者信息 +

Random vibration fatigue estimation of thin plates in high temperature environment

  • SHA Yundong1,ZHU Fulei1,ZHAO Fengtong1,2,ZHANG Mohan1
Author information +
文章历史 +

摘要

为了研究涡轮转子叶片在高温环境中气流激振力作用下随机振动疲劳失效机理,从基础研究出发,采用薄壁板件为研究对象。基于高温试验台与振动台联合试验,结合数值仿真,得到了不同温度和不同振动量级组合下试验件根部与颈部的轴向动应力响应规律。基于疲劳累积损伤理论,采用改进的雨流计数法预估试验件的疲劳寿命。通过高温随机振动试验,同时参照常温随机振动试验,获得试验件在实际工况下的应力、应变、频率等动力学响应和寿命数据,并对各个试验组的响应与寿命进行数据统计,仿真与试验结果比较发现:数值仿真对试验件破坏位置判断准确,应力响应误差在5.6%以内,频率响应相差1%左右,疲劳寿命相差28.6%以内,证明了高温条件下随机振动疲劳分析方法是有效的而且精确的。

Abstract

In order to study the random vibration fatigue failure mechanism of turbo-rotor blades under the excitation of high-temperature airflow, as a basic research on this question, thin-walled plates were adopted as simulation and experimental objects.By high-temperature test chamber and shaking table tests, the axial dynamic stress responses of test pieces were obtained under different temperature and vibration level.Based on the theory of Miner linear fatigue accumulative damage, an improved rain flow counting method was used to estimate the fatigue life of thin-walled structures.Using an integrated test bench composed of a high-temperature test bench and a shaking table , the stress and life data of the test pieces under actual working conditions were obtained, and the simulation and experimental results were compared.The results show that by simulation the failure position of the test pieces can be detected accurately, the stress response error is less than 5.6%, the maximum error of the frequency responses is about 1%and the fatigue life is less than 28.6%, which proves that the analysis method for the random vibration fatigue estimation in high temperature condition is effective and accurate.

关键词

薄壁板 / 高温条件 / 随机振动 / 疲劳寿命 / 试验验证

Key words

thin plate / high temperature condition / random vibration / fatigue life / experimental verification

引用本文

导出引用
沙云东1,朱付磊1,赵奉同1,2,张墨涵1. 薄壁结构高温随机振动疲劳寿命估算方法[J]. 振动与冲击, 2020, 39(2): 64-71
SHA Yundong1,ZHU Fulei1,ZHAO Fengtong1,2,ZHANG Mohan1. Random vibration fatigue estimation of thin plates in high temperature environment[J]. Journal of Vibration and Shock, 2020, 39(2): 64-71

参考文献

[1] Choi S T, Chou Y T.Vibration analysis of elastically supported turbo machinery blades by the modified differential quadrature method[J]. Journal of Sound and Vibration, 2001, 240(5):937-953.
[2] Jian fu Hou, Bryon J Wieks, RossA Antoniou.A investi-gation of fatigue failures of Turbine blades in a gas turbine engine by mechanical analysis[J].Engineering Failure Analysis, 2002, 9(2):201-211
[3] Vyas N S, Sidharth, Rao J S. Dynamic stress analysis and a fracture mechanics approach to life prediction of turbine blades[J].Mechanism & Machine Theory,1997, 32(4):511-527.
[4] Lee J. Large-Amplitude Plate Vibration in an Elevated Thermal Environment[J]. Applied Mechanics Reviews, 1993, 46(11S):98.
[5] Lee J. Displacement and strain histograms of thermally buckled composite plates in random vibration[C]// Structure, Structural Dynamics and Materials Conference. 2013.
[6] Lee J. Displacement and Strain Statistics of Thermally Buckled Plates[J]. Journal of Aircraft, 2012, 38(1):104-110.
[7] Schneider C W. Acoustic Fatigue of Aircraft Structures at Elevated Temperatures[J]. Acoustic Fatigue of Aircraft Structures at Elevated Temperatures, 1974.
[8] Przekop A, Rizzi S A, Sweitzer K A. An Investigation of High-Cycle Fatigue Models for Metallic Structures Exhibiting Snap-through Response[J]. International Journal of Fatigue 2008, 30(9):1579-1598.
[9] R Wang,K Jiang,F Jing,D Hu.The rmomechanical fatigue failure investigation on a single crystal nickel superalloy turbine blade[J].Engineering Failure Analysis, 2016, 66:284-295
[10] R Wang, F. Jing, D. Hu.In-phase thermal–mechanical fatigue investigation on hollow single crystal turbine blades[J].Chinese Journal of Aeronautics, 2013, 26(6):1409-1414
[11] N.G.Bychkov,V.P.Lukash,Y.A.Nozhnitsky,A.V.Perchin,A.D.Rekin.Investigations of thermomechanical fatigue for optimization of design and production process solutions for gas-turbine engine parts[J].International Journal of Fatigue. 30 (2008) 305–312.
[12] MThiele,S.Weser,U.Gampe,R.Parchem,S.Forest.Advancement of experimental methods and cailletaud material model for life prediction of gas turbine blades exposed to combined cycle fatigue[C]//.Asme Turbo Expo: Turbine Technical Conference &Exposition, 2012, :119-130.
[13] 彭立强, 王健. 涡轮叶片高温多轴低周疲劳/蠕变寿命研究[J]. 航空动力学报, 2009, 24(7):1549-1555.
PENG Li-qiang , WANG Jian.Research on low cycle-multiaxial fatigue-creep life prediction at high temperature for turbine blade[J].Journal of Aerospace Power,2009,Vol.24,NO24:1549-1555 (in Chinese)
[14] 李久楷, 刘永杰, 王清远,等. TC17钛合金高温超高周疲劳实验[J]. 航空动力学报, 2014, 29(7):1567-1573.
LI Jiukai, LIU Yongjie, WANG Qingyuan, et al. High-temperature ultra-high cycle fatigue test of TC17 titanium alloy[J]. Journal of Aerospace Power, 2014, 29(07):1567-1573. (in Chinese)
[15] 王琰, 郭定文. 航空发动机转子叶片的声振疲劳特性试验[J]. 航空动力学报, 2016, 31(11):2738-2743.
WANG Yan GUO Ding-wen,Experiment on acoustic vibration fatigue properties of the aero-engine rotor blade[J]Journal of Aerospace Power,2016,31(11):2738-2743 (in Chinese)
[16] 张大义, 马艳红, 洪杰,等. 气流激励下叶片动力响应分析方法[J]. 航空动力学报, 2009, 24(7):1523-1529.
ZHANG Da-yi,MA Yan-hong,HONG Jie,et al,Dynamical response analysis on blades arisen by aerodynamic forces through sequential method[J]. Journal of Aerospace Power, 2009, 24(7):1523-1529.(in Chinese)
[17] 周柏卓, 丛佩红, 王维岩,等. 考虑蠕变和应力松弛的发动机高温构件寿命分析方法[J]. 航空动力学报, 2003, 18(3):378-382.
ZHOU Bai-zhou,CONG Pei-hong,WANG Wei-yan .Life Prediction Considering Creep and Stress Relaxation for Gas Turbine Engine Hot Section[J]Journal of Aerospace Power,2003,18(3):378-382 (in Chinese)
[18] 沙云东,魏静.热声激励下金属薄壁结构的随机疲劳寿命估算[J].振动与冲击, 2013, 32(10):162-166.
SHA Y D,WEI J, et al.Random fatigue life prediction of metallic thin-walled structures under thermo-acoustic excitation[J].JOURNAL OF VIBRATION AND SHOCK,2013, 32(10): 162-166. (in Chinese)
[19] 沙云东, 郭小鹏, 张军. 基于应力概率密度和功率谱密度法的随机声疲劳寿命预估方法研究[J]. 振动与冲击, 2010, 29(1): 162-165.
SHA Y D,GUO X P,ZHANG J.Random sonic fatigue life prediction based on stress probablity density and power spectral desity method[J].JOURNAL OF VIBRATION ANDSHOCK,[11]2010, 29(1): 162-165. (in Chinese)
[20] 沙云东, 闻邦椿, 屈伸,等. 薄壁板在随机声载荷作用下的振动响应谱估算[J]振动与冲击,2007,26(6):62-66
 SHA Y D,WEN B C,QU S ,et al, Estimation Of Response Power Spectrum Of Panel Structure Under Random Acoustic load[J] JOURNAL OF VIBRATION AND SHOCK,2007, 26(6): 62-66(in Chinese)
[21] Sha Y D, Gao Z J, Xu F, et al. Influence of thermal loading on the dynamic response of thin-walled structure under thermo-acoustic loading[J]. Advanced Engineering Forum, 2011, 2(3): 876-881.

PDF(2320 KB)

Accesses

Citation

Detail

段落导航
相关文章

/