研究基于时间加权的反馈控制方法抑制永磁同步风力发电机(PMSG)的混沌行为。以两台PMSGs作为驱动和响应的发电系统,利用相同和不同状态变量间的反馈信息建立不同的动力学方程,分析相同状态变量反馈控制和不同状态变量反馈控制对PMSGs系统混沌振荡行为的影响。发现了相同状态变量反馈控制对PMSGs系统可实现混沌同步行为,而不同状态变量反馈控制对PMSGs系统具有抑制混沌振荡的作用。在周期时间内把这两种反馈控制结合在一起,分析不同时间加权下PMSGs系统的动力学行为,发现时间分数因子和耦合参数的不同取值可使PMSGs系统产生混沌、混沌同步和混沌抑制等动力学行为。数值仿真验证了基于时间加权的反馈控制器对抑制PMSGs系统混沌行为的有效性。研究结果对提高风能利用率,保证电力系统的安全稳定运行具有重要的参考价值。
Abstract
In view of that in the conventional studies about the chaos control of wind generators, only the control of a single generator was focused, in the paper, the coupled chaos control of multi generators was introduced, a time-weighted feedback control method with two different control modes was proposed and the control effects by the two modes were compared.Two coupled permenant magnet synchronous generators(PMSGs) were taken as an example in the analysis, the one used as a drive system and the other used as a response system.Two different control modes for the PMSGs chaotic motion control were adopted, the similar variables control and dissimilar variables control, and accordingly, two different dynamic equations were established.Their influential factors on the chaotic behaviors of the PMSGs were investigated.It is found that the two chaotic PMSGs coupled via similar control variables can lead to synchronized chaotic state, while the PMSGs coupled via dissimilar control variables have the reduction capability on the chaotic motions.Further, a control strategy was proposed combining these two control modes in an assigned periodic time and switching between them according to a time weight, expressed as a time fraction factor.The dynamic behariors of the PMSGs system under different coupled parameter C and different time fraction factor fsim were analysed.It is shown that the system may fall into the regions of desynchronized chaos, synchronized chaos and amplitude death because of different C and fsim.The numerical simulation results show that the proposed feedback control strategy is effeetive to restrain the chaotic motions of the PMSGs system.The study results could extend the utilization of wind energy and give a reference to the security and stabilization analysis of complex power systems in design.
关键词
永磁同步风力发电机(PMSG) /
混沌同步(CS) /
混沌抑制
{{custom_keyword}} /
Key words
permanent magnet synchronous generator (PMSG) /
chaos synchronization (CS) /
chaos control
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Chinchilla M, Arnaltes S, Burgos J C. Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid[J]. IEEE Transactions on energy conversion, 2006, 21(1): 130-135.
[2] Justo J J, Mwasilu F, Jung J W. Doubly-fed induction generator based wind turbines: A comprehensive review of fault ride-through strategies[J]. Renewable and sustainable energy reviews, 2015, 45: 447-467.
[3] Chen Y, Pillay P, Khan A. PM wind generator topologies[J]. IEEE Transactions on Industry Applications, 2005, 41(6): 1619-1626.
[4] Polinder H, de Haan S W H, Dubois M R, et al. Basic operation principles and electrical conversion systems of wind turbines[J]. EPE Journal, 2005, 15(4): 43-50.
[5] Tripathi S M, Tiwari A N, Singh D. Grid-integrated permanent magnet synchronous generator based wind energy conversion systems: A technology review[J]. Renewable and Sustainable Energy Reviews, 2015, 51: 1288-1305.
[6] Geng H, Liu L, Li R. Synchronization and Reactive Current Support of PMSG based Wind Farm during Severe Grid Fault[J]. IEEE Transactions on Sustainable Energy, 2018. doi:10.1109/TSTE.2018.2799197
[7] Si G Q, Zhu J W, Diao L J, et al. Modeling, nonlinear dynamic analysis and control of fractional PMSG of wind turbine[J]. Nonlinear Dynamics, 2017, 88(2): 985-1000.
[8] 杨益飞, 骆敏舟, 邢绍邦, 等. 永磁同步发电机混沌运动分析及最优输出反馈H∞控制[J]. 物理学报, 2015, 64(4): 040504.
YANG Yifei, LUO Mingzhou, Xing Shaobang, et al. Analysis of chaos in permanent magnet synchronous generator and optimal output feedback H∞ control[J]. Journal of Acta Physica Sinica, 2015, 64(4): 040504.
[9] Rahimi M. Modeling, control and stability analysis of grid connected PMSG based wind turbine assisted with diode rectifier and boost converter[J]. International Journal of Electrical Power & Energy Systems, 2017, 93: 84-96.
[10] Mechter A, Kemih K, Ghanes M. Backstepping control of a wind turbine for low wind speeds[J]. Nonlinear Dynamics, 2016, 84(4): 2435-2445.
[11] Wu D H, Song J, Shen Y X, et al. Active fault-tolerant linear parameter varying control for the pitch actuator of wind turbines[J]. Nonlinear Dynamics, 2017, 87(1): 475-487.
[12] Heshmatian S, Kazemi A, Khosravi M, Khaburi DA. Fuzzy logic based MPPT for a Wind Energy Conversion System using Sliding Mode Control[C]//Power Electronics, Drive Systems & Technologies Conference (PEDSTC), 2017 8th. IEEE, Mashhad, Iran, 2017: 335-340.
[13] Chen J W, Chen J, Gong C Y. On optimizing the aerodynamic load acting on the turbine shaft of PMSG-based direct-drive wind energy conversion system[J]. IEEE Transactions on Industrial Electronics, 2014, 61(8): 4022-4031.
[14] Hemati N, Kwatny H. Bifurcation of equilibria and chaos in permanent-magnet machines[C]//Decision and Control, Proceedings of the 32nd IEEE Conference on. San Antonio, TX, USA, 1993: 475-479.
[15] 李健昌, 韦笃取, 罗晓曙, 等. 混沌电机自适应时滞同步控制研究[J]. 振动与冲击, 2014, 33(16): 105-108.
LI Jianchang, WEI Duqu, LUO Xiaoshu, et al. Adaptive lag synchronization of chaotic pemanent magnet synchronous motors[J]. Journal of Vibration and Shock, 2014, 33(16): 105-108.
[16] 汪慕峰, 韦笃取, 罗晓曙, 等. 基于有限时间稳定理论的无刷直流电动机混沌振荡控制[J]. 振动与冲击, 2016, 35(13): 90-93.
WANG Mufeng, WEI Duqu, LUO Xiaoshu, et al. Chaos control in a brushless DC motor based on finite-time stability theory[J]. Journal of Vibration and Shock, 2016, 35(13): 90-93.
[17] 吴忠强, 杨阳, 徐纯华. 混沌状态下永磁同步发电机的故障诊断-LMI 法研究[J]. 物理学报, 2013, 62(15): 150507.
WU Zhongqiang, YANG Yang, XU Chunhua. Fault diagnosis for permanent magnet synchronous generator under chaos conditions: LMI approach[J]. Journal of Acta Physica Sinica, 2013, 62(15): 150507.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}