对于风湍流等高斯分布流速场中的线性结构体系,当考虑荷载中脉动流速二次项的影响时,理论上其振动响应将呈现非高斯分布特性。基于调试得到的不同粗糙工况高斯流场,开展了单自由度线性体系顺流向振动响应测试,研究了单自由度线性体系加速度响应的非高斯分布特性,分析了粗糙度对响应非高斯成分的影响,讨论了三种常见非高斯概率密度逼近方法对响应的拟合效果。试验结果表明:试验高斯流场中单自由度线性体系的顺流向加速度响应主要呈现出尖峰非高斯分布特征,且随着紊流度的提高,响应非高斯性有增强的趋势;响应的非高斯概率密度宜采用高斯混合模型方法进行拟合。
Abstract
For linear elastic structures subjected to the fluctuating pressure of Gaussian-velocity turbulence, such as wind, dynamic responses or behaviors of the structures will show non-Gaussian distribution due to the quadratic term of fluctuating velocity theoretically.An experiment research on the dynamic responses and non-Gaussian characteristics of a single-degree-of-freedom(SDOF) linear elastic model subjected to Gaussian-velocity turbulence with different turbulence intensity was carried out.The non-Gaussian acceleration responses of the linear SDOF model as well as its correlation with turbulence intensity were analyzed.Finally, three approximation models with non-Gaussian probability density function(PDF) were discussed.The experiment results indicate that the acceleration responses of the SDOF model are of non-Gaussian distribution with high kurtosis of the PDF.With the increase of turbulence intensity, the kurtosis of non-Gaussian PDF will be magnified.The results also show that the Gaussian mixture model is much more valid for approximating non-Gaussian PDF compared to the Gram-Charlier series or Edgeworth series.
关键词
动力响应 /
非高斯性 /
单自由度(SDOF)线性体系 /
振动试验
{{custom_keyword}} /
Key words
dynamic behavior /
non-Gaussian /
single degree-of-freedom(SDOF) linear system /
vibration test
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GB50009-2012. 建筑结构荷载规范[S].北京:中华人民共和国住房和城乡建设部,2012.
GB50009-2012. Load code for the design of building structures[S]. Beijing: Ministry of Housing and Urban-Rural Development, 2012.
[2] Soize C. Gust loading factors with nonlinear pressure terms[J]. Journal of the Structural Division, 1978, 104(6):991-1007.
[3] S.Benfratello, G.Falsone, G.Muscolino. Influence of the quadratic term in the along wind stochastic response of SDOF structures [J].Engineering Structures, 1996, 18(9):685-695.
[4] V.Gusella, A.L.Materazzi. Non-Gaussian along-wind response analysis in time and frequency domains [J].Engineering Structures, 2000, 1:49-57.
[5] 王仲刚,程华,邓洪洲.高耸结构非 Gauss 风载响应分析[J].重庆大学学报(自然科学版), 2004, 27(1):66-68.
Wang Zhong-gang, Cheng Hua, Deng Hong-zhou. Dynamic Responses of the High Slender Structure Under Non-Gaussian Model of Wind Load [J]. Journal of Chongqing University (Natural Science Edition), 2004, 27(1):66-68.
[6] 程华,王仲刚,黄宗明等.基于非 Gauss 风载的高耸结构风振可靠性分析[J].工程力学,2006, 26(7): 81~86.
Cheng Hua, Wang Zhong-gang, Huang Zong-ming. The reliability analysis of high-rise slender structures subjected to non-Gaussian wind load[J]. Engineering Mechanics, 2006, 26(7): 81~86.
[7] 张鹏. 大水深明渠湍流涡尺度研究[D].重庆,重庆交通大学, 2013.
Zhang Peng. Turbulent Vortex Scales in Open-Channel of Large Depth[D]. Chongqing, Chongqing Jiaotong University, 2013
[8] 朱位秋, 随机振动[M]. 北京,科学出版社,1992.
Zhu Wei-qiu, Random Vibration[M]. Beijing, Science Press,1992.
[9] 程红伟, 陶俊勇, 陈循, 蒋瑜. 基于高斯混合模型的非高斯随机振动幅值概率密度函数[J]. 振动与冲击, 2014,33(5):115-119.
Cheng Hong-wei, Tao Jun-yong, Chen Xun, Jiang Yu. Amplitude probability density functions for non-Gaussian random vibrations based on a Gaussian mixture model[J]. Journal of vibration and shock, 2014, 33(5): 115-119.
[10] 程红伟, 陶俊勇, 陈循, 蒋瑜. 偏斜非高斯随机振动信号幅值概率密度函数研究[J]. 振动与冲击, 2014,33(12): 121-125.
Cheng Hong-wei, Tao Jun-yong, Chen Xun, Jiang Yu. Amplitude probability density function for skewed non-gaussian random vibration signals based on Gaussian-mixture model[J]. Journal of vibration and shock, 2014, 33(12): 121-125.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}