空蚀是指空化过程中产生的空泡溃灭引起过流表面材料损坏的现象。为研究离心泵叶轮空蚀后的振动信号特征,选用IS-50-160-00单级单吸离心泵为试验对象,基于虚拟仪器技术搭建试验泵系统。测得离心泵空蚀条件下的振动信号,采用均方根(RMS)分析、峭度(K)分析两种统计方法对发生空蚀后的离心泵振动信号的平均能量、冲击波能量进行分析,采用短时傅里叶变换(STFT)分析了振动信号的时频域特性。分析结果表明:空蚀条件下整体来看基座方向和轴向方向振动幅值较大且都是无规则振动,而横向方向和纵向方向上的振动信号振幅相对较小;振动信号的能量随着流量的增大呈现先减小后平稳再增加的趋势,空蚀增加了振动信号的能量值;空蚀加剧了液体对离心泵的冲击使得振动信号峭度值增加,且基座方向峭度值大于3可作为空蚀故障的诊断参考标准;通过时频谱分析可知空蚀发生后流体可能对离心泵存在冲击波及冲击波导致的脉冲信号,且空蚀后产生了高频振动信号,高频带的振动信号可为离心泵空蚀故障诊断提供参考。研究叶轮空蚀后离心泵振动信号的特征有助于及时发现离心泵空蚀故障的发生,从而调整运行参数,以免造成严重后果。
Abstract
Cavitation erosion is a phenomenon that surface material damages by the crumbling and failing of cavity.In order to investigate the vibration characteristics of a centrifugal pump after cavitation erosion, a single-stage single-suction centrifugal pump (type IS-50-160-00) was selected as the research object.A testing rig was built with the utilization of virtual instrument.The vibration signal of the centrifugal pump was measured.Statistical indicators of RMS and kurtosis were taken to analyze the average energy and shock wave energy of vibration signals.STFT was used to characterize vibration signals in time-frequency domain.The results show that there is a large extent variation of vibration amplitude in the direction of base and axis, and weak variation of vibration amplitude in the direction of radial and vertical.With the increasing of flow rate, the RMS of vibration signal falls at first, then keeps steady, and mounts at last when the flow rate is over the design point.The phenomenon of cavitation erosion causes the increasing of RMS and kurtosis value of vibration signal of the centrifugal pump.When the kurtosis value of vibration signal in the direction of base is over 3, it can be judged that the phenomenon of cavitation erosion occurs.It can be shown from the time-frequency spectrum that there is a shock wave and pause signals caused by the shock wave, which are reflected by the higher frequency band components of the vibration signal that can provide a reference to the diagnosis of the occurrence of cavitation erosion.Analyzing the vibration signal characteristics of centrifugal pumps with cavitation erosion impellers is of great significance to find out the cavitation erosion failure of the centrifugal pumps in time, and adjust the operating parameters to avoid serious consequences.
关键词
离心泵 /
空蚀 /
试验研究 /
振动 /
时域分析 /
时频域分析
{{custom_keyword}} /
Key words
centrifugal pump /
cavitation erosion /
experimental study /
vibration /
time domain analysis /
time-frequency spectrum
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 袁寿其, 袁建平, 裴吉. 离心泵内部流动与运行节能[M]. 科学出版社, 2016.
Yuan Shouqi, Yuan Jianping, Yu Ji. Centrifugal pump internal flow and operation energy conservation [M]. Science Press, 2016.(in Chinese)
[2] 刘娟,潘罗平,桂中华等.国内水电机组状态监测和故障诊断技术现状[J].大电机技术,2010(2).
Liu Juan, Pan Luopin, Gui Zhonghua, et al. The current status of on-line state monitoring and fault diagnosis technologies for hydrogenating unit[J]. Large Electric Machine and Hydraulic Turbine, 2010(2).
[3] 高波,杨敏官,李忠,等.空化流动诱导离心泵低频振动的实验研究[J].工程热物理学报,2012,33(6):965-968.
Gao Bo, Yang Minguan, Li Zhong, et al. Experimental study on cavitation induced low frequency vibration in a centrifugal pump[J]. JOURNAL OF ENGINEERING THERMOPHYSICS, 2012, 33(6):965-968.
[4] 王勇,刘厚林,袁寿其,等.离心泵非设计工况空化振动噪声的试验测试[J].农业工程学报,2012,28(2):35-38.
Wang Yong, Liu Houlin, Yuan Shouqi, et al. Experimental testing on cavitation vibration and noise of centrifugal pumps under off-design conditions[J], Transactions of the CSAE, 2012, 28(2):35-38.
[5] 叶阳辉,朱相源,孙光普,等.离心泵内空泡演化与其对振动的影响[J].农业机械学报,2017,48(6):88-93.
Ye Yanghui, Zhu Xiangyuan, Sun Guangpu, et al. Evolution of cavitation bubbles and its influence on vibration in centrifugal pump[J], Transactions of the Chinese Society of Agricultural Machinery, 2017, 48(6):88-93.
[6] Chudina M. Detection of cavitation phenomenon in a centrifugal pump using audible sound[J]. Mechanical Systems & Signal Processing, 2003, 17(6):1335-1347.
[7] Chudina M. Noise as an indicator of cavitation in a centrifugal pump[J]. Acoustical Physics, 2003,49(4): 463-474
[8] Chini S F, Rahimzadeh H, Bahrami M. Cavitation Detection of a Centrifugal Pump Using Noise Spectrum[C]// ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2005:13-19.
[9] Tan L, Zhu B S, Cao S L, et al. Numerical simulation of unsteady cavitation flow in a centrifugal pump at off-design conditions[J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989-1996 (vols 203-210), 2014, 228(11):1994-2006.
[10] Tan L, Zhu B S, Cao S L, et al. Numerical simulation of unsteady cavitation flow in a centrifugal pump at off-design conditions[J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989-1996 (vols 203-210), 2014, 228(11):1994-2006.
[11] Brennen C E. Cavitation and bubble dynamics[J]. 1995, 33(4):609-617.
[12] Trinath S. Making centrifugal pumps more reliable [J]. World Pumps, 2009, 2009(513):32-36.
[13] Ray S. Predictive maintenance of pumps using condition monitoring [M]. Amsterdam: Elsevier Science,2004.
[14] Bark G, Berchiche N, Grekula M. Application of principles for observation and analysis of eroding cavitation-The EROCAV observation handbook[M]. Edition 3.1, Sweden: Chalmers University of Technology, 2004.
[15] Franc J P. Impact Load Measurements in an Erosive Cavitating Flow[J]. Journal of Fluids Engineering, 2011, 133(12):1915-1920.
[16] 袁丹青,陈向阳,白滨,等.水力机械空化空蚀问题的研究进展[J].排灌机械工程学报,2009,27(4):269-272.
Yuan Danqing, Chen Xiangyang, Bai Bing, et al. Research progress of cavitation and erosion in hydraulic machinery[J]. ournal of Drainage and Irrigation Machinery Engineering(JDIME), 2009, 27(4)269-272.
[17] Wan T,Naoe T,Wakui T,et al.Cavitation damage evaluation using laser impacts[J].Materials Transactions,2014,55(7):1024-1029.
[18] Osterman A,Bachert B,Sirok B,et al.Time dependant measurements of cavitation damage[J].Wear,2009,266(9):945-951.
[19] 盛鹏,何永勇,褚福磊.水轮机空蚀在线监测与诊断系统[J].水利水电技术,2002,33(7):17-20.
Shen Peng, He Yongyong, Chu Fulei. The online monitoring diagnosis system for cavitation erosion of hydro turbines[J]. Water Resources and Hydropower Engineering, 2002,33(7):17-20.
[20] 骆斌, 刘德祥, 陈捷. 离心泵汽蚀振动特性研究[J]. 水电与新能源, 2015(6):34-38.
Luo Bin, Liu Dexiang, Chen Jie. On vibration characteristic of the centrifugal pump under caviation condition[J]. HYDROPOWER AND NEW ENERGY, 2015(6):34-38.
[21] 向玲, 唐贵基, 胡爱军. 旋转机械非平稳振动信号的时频分析比较[J]. 振动与冲击, 2010, 29(2):42-45.
Xiang Lin, Tang Guiji, Hu Aijun. Vibration signal’s time-frequency analysis and comparison for a roatting machinery[J]. JOURNAL OF VIBRATION AND SHOCK, 2010, 29(2):42-45.
[22] 胡振邦, 许睦旬, 姜歌东,等. 基于小波降噪和短时傅里叶变换的主轴突加不平衡非平稳信号分析[J]. 振动与冲击, 2014, 33(5):20-23.
Hu Zhenbang, Xu Muxun, Jiang Gedong et,al. Analysis of non-stationary signal of a sudden unbalanced spindle based on wavelet noise reduction and short-time Fourier transformation[J]. JOURNAL OF VIBRATION AND SHOCK, 2014, 33(5):20-23.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}