一类二自由度碰撞振动系统的余维二擦边分岔研究

伍帅,徐洁琼,王子汉,袁泉

振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 113-120.

PDF(1175 KB)
PDF(1175 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 113-120.
论文

一类二自由度碰撞振动系统的余维二擦边分岔研究

  • 伍帅,徐洁琼,王子汉,袁泉
作者信息 +

Co-dimensional-two grazing bifurcation of two-degree-of-freedom vibro-impact systems

  • WU Shuai,XU Jieqiong,WANG Zihan,YUAN Quan
Author information +
文章历史 +

摘要

当擦边分岔和光滑分岔同时发生时,非光滑系统会发生一类余维二擦边分岔。一类二自由度碰撞振动系统的此类余维二擦边分岔及余维二擦边点附近的动力学行为得到研究。首先,讨论了擦边周期运动的存在性条件。利用不连续映射方法构造了1/n碰撞周期运动的全局庞加莱映射,并得出1/n碰撞周期运动的分岔条件。其次,结合擦边周期运动条件和碰撞周期运动分岔条件推导出擦边分岔和光滑分岔同时发生时满足的解析表达式,并数值分析了不同周期下系统余维二擦边分岔点的分布情况。最后,通过对比分别由全局庞加莱映射和原系统得到的余维二擦边点附近的分岔图,验证了理论分析的有效性。

Abstract

When grazing bifurcation and smooth bifurcation take place simultaneously, one kind of co-dimensional-two grazing bifurcation will occur. The co-dimensional-two bifurcation of a two-degree-of-freedom vibro-impact system and its dynamic behavior near the co-dimensional-two grazing bifurcation points were studied. Firstly, the existence conditions of grazing periodic motion were discussed. The global Poincaré mapping for the 1/n impact period motions was constructed by using the discontinuous mapping method, and the bifurcation conditions for the 1/n impact period motions were obtained. Then, an analytical expression satisfied for grazing bifurcation and smooth bifurcation was derived by combining the conditions of periodic grazing bifurcation and periodic impact bifurcation. Based on the expression, the distribution of co-dimensional-two bifurcation points of the system under different periods was analyzed by numerical simulation. Finally, the effectiveness of theoretical analysis was verified by comparing the bifurcation diagrams obtained by the global Poincaré map and the differential system.

关键词

碰撞振动系统 / 不连续映射方法 / 余维二擦边分岔

Key words

vibro-impact system / discontinuous mapping method / co-dimensional-two grazing bifurcation

引用本文

导出引用
伍帅,徐洁琼,王子汉,袁泉. 一类二自由度碰撞振动系统的余维二擦边分岔研究[J]. 振动与冲击, 2020, 39(20): 113-120
WU Shuai,XU Jieqiong,WANG Zihan,YUAN Quan. Co-dimensional-two grazing bifurcation of two-degree-of-freedom vibro-impact systems[J]. Journal of Vibration and Shock, 2020, 39(20): 113-120

参考文献

[1] 陆启韶, 徐鉴, 徐伟. “非光滑系统动力学” 专题简介[J]. 力学学报, 2012, 45(1): 1-1.
Lu Qishao, Xu Jian, Xu Wei. Special introduction to "Dynamics of Non-smooth Systems" [J]. Journal of Mechanics, 2012, 45 (1): 1-1. 
[2] Wen G , Chen S , Jin Q . A new criterion of period-doubling bifurcation in maps and its application to an inertial impact shaker[J]. Journal of Sound and Vibration, 2008, 311(1-2):212-223.
[3] Nordmark A B . Non-periodic motion caused by grazing incidence in an impact oscillator[J]. Journal of Sound and Vibration, 1991, 145(2):279-297.
[4] Nordmark A B . Universal limit mapping in grazing bifurcations[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1997, 55(55):266-270.
[5] Bernardo M , Budd C , Champneys A R . Piecewise-smooth Dynamical Systems[M]. Springer London, 2008.
[6] Di Bernardo M, Budd C J, Champneys A R. Normal form maps for grazing bifurcations in n-dimensional piecewise-smooth dynamical systems[J]. Physica D: Nonlinear Phenomena, 2001, 160(3-4): 222-254.
[7] Kowalczyk P, di Bernardo M, Champneys A R, et al. Two-parameter discontinuity-induced bifurcations of limit cycles: Classification and open problems[J]. International Journal of bifurcation and chaos, 2006, 16(03): 601-629.
[8] Peterka F . Bifurcations and transition phenomena in an impact oscillator[J]. Chaos, Solitons and Fractals, 1996, 7(10):1635-1647.
[9] Zhao X , Dankowicz H . Unfolding degenerate grazing dynamics in impact actuators[J]. Nonlinearity, 2006, 19(2):399-418.
[10] Yin S, Wen G, Xu H, et al. Higher order zero time discontinuity mapping for analysis of degenerate grazing bifurcations of impacting oscillators[J]. Journal of Sound and Vibration, 2018, 437(2018): 209-222.
[11] Thota P, Zhao X, Dankowicz H. Co-dimension-two grazing bifurcations in single-degree-of-freedom impact oscillators[J]. Journal of Computational and Nonlinear Dynamics, 2006, 1(4): 328-335.
[12] Xu J , Chen P , Li Q . Theoretical analysis of co-dimension-two grazing bifurcations in n-degree-of-freedom impact oscillator with symmetrical constrains[J]. Nonlinear Dynamics, 2015, 82(4):1641-1657.
[13] Yin S, Shen Y, Wen G, et al. Analytical determination for degenerate grazing bifurcation points in the single-degree-of-freedom impact oscillator[J]. Nonlinear Dynamics, 2017, 90(1): 443-456.
[14] Xu H, Ji J. Analytical-numerical studies on the stability and bifurcations of periodic motion in the vibro-impact systems with clearances[J]. International Journal of Non-Linear Mechanics, 2019, 109(2019): 155-165.
[15] Dankowicz H , Zhao X . Local analysis of co-dimension-one and co-dimension-two grazing bifurcations in impact microactuators[J]. Physica D, 2005, 202(3-4):238-257.
[16] Bernardo M, Budd C, Champneys A R, et al. Piecewise-smooth dynamical systems: theory and applications[M]. Springer Science & Business Media, 2008.
[17] Xu H , Yin S , Wen G , et al. Discrete-in-time feedback control of near-grazing dynamics in the two-degree-of-freedom vibro-impact system with a clearance[J]. Nonlinear Dynamics, 2017, 87(2):1127-1137.

PDF(1175 KB)

570

Accesses

0

Citation

Detail

段落导航
相关文章

/