双菱形仿袋鼠腿悬架的PID和Fuzzy-PID控制特性研究

宋勇,杜锐,李占龙,燕碧娟,章新,连晋毅,智晋宁

振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 149-160.

PDF(3266 KB)
PDF(3266 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 149-160.
论文

双菱形仿袋鼠腿悬架的PID和Fuzzy-PID控制特性研究

  • 宋勇,杜锐,李占龙,燕碧娟,章新,连晋毅,智晋宁
作者信息 +

Characteristics study based on PID and Fuzzy-PID control of a double-diamond bionic kangaroo leg suspension

  • SONG Yong,DU Rui,LI Zhanlong,YAN Bijuan,ZHANG Xin,LIAN Jinyi,ZHI Jinning
Author information +
文章历史 +

摘要

为改善传统车辆悬架的性能,借鉴自然进化而来的袋鼠腿部结构,提出一种双菱形仿袋鼠腿悬架。为研究该悬架的行为特性,采用Lagrange方程法推导其动力学模型;基于动力学模型分别设计其PID和Fuzzy-PID控制器;在MATLAB/simulink环境下,建立其被、主动仿真模型并开展特性仿真与分析。研究发现:(1)被、主动模式下,车身垂向加速度、悬架动挠度及轮胎动位移均方根,随着车速和路面等级的增加均有所增加且在允许范围内。(2)不同路面等级下,随着车速的增加,被、主动模式的车身垂向加速度传递率数值基本相同,均呈单调递减趋势,(如,被动模式的车身垂向加速度传递率在1.64%~0.80%之间变化),但主动模式优于被动模式,Fuzzy-PID控制优于PID控制(约下降0.5%~0.6%);(3)不同路面等级下,随着车速的增加,被、主动模式的轮胎动位移传递率数值均增加,但其增加率呈下降趋势。从传递率数值上看,主动模式明显优于被动模式(约减少15%~25%,高车速时下降明显),但Fuzzy-PID控制与PID控制效果基本相同;(4)由车身加速度、悬架动挠度和轮胎动位移传递率频响特性可知双菱形仿袋鼠腿悬架有两个峰值,第一个峰值在0.8Hz附近,第二个峰值在15Hz附近;主动控制下悬架的舒适性和稳定性均优于被动悬架,Fuzzy-PID较PID控制效果更佳。研究结果表明:(1)所提悬架的结构设计合理、方案可行。(2)该悬架具有良好的路面适应性、高速舒适性和稳定性,这些特性与袋鼠腿的运动特性相吻合,验证了本文研究思路的正确性和控制方法的有效性。

Abstract

In order to improve the performance of traditional vehicle suspension, a double-diamond bionic kangaroo leg suspension was proposed based on the kangaroo leg structure evolved from nature. In order to study the behavior characteristics of the suspension, a dynamic model was established by the Lagrange’s Equations; PID and Fuzzy-PID controllers were designed respectively based on the dynamic model; passive and active simulation models were established and the simulation characteristic was analyzed through MATLAB/simulink. It is found that: ① In the passive and active modes, with the increase of vehicle speed and road grade, root mean square values of the body vertical acceleration, the suspension deflection and the tire dynamic displacement increase and they are limited in the allowable ranges. ② Under different road levels, with the increase of vehicle speed, the body vertical acceleration transmissibility values are basically the same, and it has a monotonous decreasing trend. (For example, the body vertical acceleration transmissibility in passive mode is 1.64%~0.80%), but the control effect of the active mode is better than that of the passive mode, and the control effect of Fuzzy-PID control is better than that of PID control (approximately 0.5%~0.6%); ③ At different road levels, with the increase of vehicle speed, the value of the dynamic displacement transmissibility increases in active and passive modes, but the numerical increase rate presents a downward trend. Seen from the value of the transmissibility, the active mode is significantly lower than the passive mode (about 15% to 25% reduction, decreasing significantly at high speed), but the effects of Fuzzy-PID control and PID control are basically the same. ④ From the frequency response characteristics of vehicle body acceleration, suspension deflection, and tire dynamic displacement transmissibility, it can be seen that the double-diamond bionic kangaroo leg suspension has two peaks. The first peak is near 0.8 Hz, and the second peak is around 15 Hz; the comfort and stability of the suspension is better in the active mode than in the passive mode. Fuzzy-PID control is better than PID control. The research results show that: the structure design of the proposed suspension is reasonable and the scheme is feasible; the suspension has good road adaptability, high-speed comfort and stability. These characteristics are consistent with the kangaroo leg motion characteristics, which verifies the correctness of the research ideas and the effectiveness of the control method.

关键词

悬架 / 双菱形 / 仿袋鼠腿结构 / PID控制 / Fuzzy-PID控制

Key words

suspension / double-diamond / bionic kangaroo leg structure / PID control / Fuzzy-PID control

引用本文

导出引用
宋勇,杜锐,李占龙,燕碧娟,章新,连晋毅,智晋宁. 双菱形仿袋鼠腿悬架的PID和Fuzzy-PID控制特性研究[J]. 振动与冲击, 2020, 39(20): 149-160
SONG Yong,DU Rui,LI Zhanlong,YAN Bijuan,ZHANG Xin,LIAN Jinyi,ZHI Jinning. Characteristics study based on PID and Fuzzy-PID control of a double-diamond bionic kangaroo leg suspension[J]. Journal of Vibration and Shock, 2020, 39(20): 149-160

参考文献

[1] 葛文杰. 仿袋鼠跳跃机器人运动学及动力学研究 [D]. 西北工业大学, 2006.
[2] 詹望. 仿袋鼠跳跃机器人多刚体动力学研究 [D]. 西北工业大学, 2007.
[3] Li Jingying,Jing Xingjian,Li, Zhengchao,Huang Xianlin. Fuzzy Adaptive Control for Nonlinear Suspension Systems Based on a Bioinspired Reference Model With Deliberately Designed Nonlinear Damping[J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66: 8713-8723.
[4] Ripamonti, F, Chiarabaglio, A. A smart solution for improving ride comfort in high-speed railway vehicles[J]. JOURNAL OF VIBRATION AND CONTROL, 2019, 25: 1958-1973.
[5] Termous, Hussein, Shraim, Hassan, Talj, Reine, Francis, Clovis. Coordinated control strategies for active steering, differential braking and active suspension for vehicle stability, handling and safety improvement[J].VEHICLE SYSTEM DYNAMICS, 2019, 57: 1494-1529.
[6] 袁海英,高远,王雨涛,黄良玉.车辆主动悬架系统的舒适性优化控制[J].计算机仿真,2018,35(01):141-146.
Yuan Haiying, Gao Yuan, Wang Yutao, Huang Liangyu. Comfort Control of Vehicle Active Suspension System[J]. Computer Simulation, 2018, 35(01):141-146.
[7] 周军超, 唐飞, 胡光忠.基于全尺寸模型的半主动悬架车辆平顺性研究[EB/OL].http://kns.cnki.net/kcms/detail/50.1190. U.20181108.1158.020.html.
[8] 牛治东, 吴光强.随机激励下汽车非线性悬架系统的混沌研究[J]. 振动与冲击, 2016, 35(17): 39-43+57.
Niu Zhidong, Wu Guangqiang.  Chaos  Research of Vehicle Nonlinear  Suspension  System  under   Random Excitation[J]. Journal of Vibration and Shock, 2016, 35(17):39-43+57.
[9] 陈长征,王刚,于慎波.含输入时滞的电动汽车悬架系统有限频域振动控制的研究[J].振动与冲击,2016,35(11):130-137.
Chen Changzheng, Wang Gang, Yu Shenbo.Study on Finite Frequency Domain Vibration Control of Electric Vehicle Suspension System with Input Time Delay[J].Journal of Vibration & Shock,2016,35(11):130-137.
[10] Shen, X.R. Nonlinear model-based control of pneumatic artificial muscle servo systems, Control Engineering Practice, 18 (3), 311-317, (2010).
[11] Biewener, A.A. Locomotor design for acceleration versus elastic energy storage in kangaroo rat hopping, Journal of Biomechanics, 20 (9), 896, (1987).
[12] 吴旭东,左曙光,雷镭,杨宪武,李勇.基于摩擦自振的轮胎-悬架振动系统仿真分析[J].振动与冲击,2011,30(09):89-93.
Wu Xudong, Zuo Shuguang, Lei Lei, Yang Xianwu, Li Yong. Simulation Analysis of Tire-suspension Vibration System Based on Friction Self-vibration[J].Journal of vibration and shock,2011,30(09):89-93.   
[13] 张慧杰,郭志平,司景萍,郝慧荣.汽车悬架整车动力学模型的参数辨识[J].振动与冲击,2013,32(23):145-150.
Zhang Huijie, Guo Zhiping, Si Jingping, Hao Huirong.Parameter Identification of Dynamic Model of Vehicle Suspension Vehicle[J].Journal of Vibration and Shock,2013,32(23):145-150.
[14] Briggs R, Lee J, Haberland M, et al. Tails in biomimetic design: Analysis, simulation, and experiment[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,2012: 1473-1480.
[15] Dawson, T. Energetic cost of locomotion in kangaroos, Nature, 246,134-313 (1973).
[16] Hanan, U.B., Weiss, A., Zaitsev, V. Jumping efficiency of small creatures and its applicability in robotics, Procedia Manufacturing, 21, 243-250, (2018).
[17] Chen, D.S., Yin, J.M., Zhao, K., Zheng, W.J., Wang, T.M. Bionic mechanism and kinematics analysis of hopping robot inspired by locust jumping, Journal of Bionic Engineering, 8 (4), 429-439, (2011).
[18] O’Connor, S.M., Dawson, T.J., Kram, R., Donelan, J.M. The kangaroo’s tail propels and powers pentapedal locomotion, Biology Letters, 10 (7), (2014).
[19] Kar, D.C., Kurien Issac, K., Jayarajan, K. Gaits and energetics in terrestrial legged locomotion, Mechanism and Machine Theory, 38 (4), 355-366, (2003).
[20] Festo AG & Co. KG, BionicKangaroo energy-efficient jump kinematics based on a nat-ural model, Retrieved from http://www.festo.com/net/SupportPortal/Files/334102/Festo_BionicKangaroo_de.pdf, (Accessed January 8, 2019).
[21] Knut, G., Sebastian, H., Alexander, H., Nadine, K., Nina, G., Elias, K. Control design for a bionic kangaroo, Control Engineering Practice, 42, 106-117, (2015).
[22] K, K.G., Pathak, P.M. Dynamic modelling & simulation of a four legged jumping robot with compliant legs, Robotics and Autonomous Systems, 61 (3), 221-228, (2013).
[23] Ge, W.J., Shen, Y.W., Yang, F. Kinematics of kangaroo robot jumping gait, Chinese Journal of Mechanical Engineering, 5, 22-26, (2006).
[24] Zuo, G.Y., Liu, X. Stable jumping control of bionic kangaroo robot using spring-loaded inverted pendulum model, Control Theory & Applications, 35 (8), 1151-1158, (2018).
[25] Graichen K, Hentzelt S,Hildebrandt A, et al. Modelbased analysis and motion planning for the Bionic Kangaroo[J].AT-AUTOMATISIERUNGSTECHNIK, 2015,63(8): 606-620.
[26] NGUYEN Q V,PARK H C. Design and demonstration of a locust-like jumping mechanism for small-scale  robots[J].Journal of Bionic Engineering,2012 9(3): 271-281.
[27] 马驰骋,罗亚军,张希农,程相孟,邵明玉.基于模糊PID控制器的变质量-柔性梁结构振动主动控制[J].振动与冲击,2018,37(23):197-203+240.
Ma Chicheng, Luo Yajun, Zhang Xinong, Cheng Xiangmeng, Shao Mingyu. Variable mass-flexible beam structure active control based on fuzzy PID controller [J] .Vibration and Shock, 2018,37 (23): 197-203 + 240.
[28] Kuznetsov A, Mammadov M, Sultan I, et al. Optimization of suspension system with inter device of the quarter-car Applied Mechanics, 2010, 81(10): analysis[J]. Archive of 1427-1437.
[29] 宋勇,刘世闯,车江轩等.一种仿袋鼠腿车用悬架[P].中国专利:CN107415618A,2017-12-01.
[30] 宋勇,刘世闯,王瑶等.一种菱形仿袋鼠腿悬架[P].中国专利:CN108583184A,2018-9-28.
[31] 沈钰杰,刘雁玲,陈龙,杨晓峰,仇成群.基于高阶阻抗传递函数车辆ISD悬架优化设计与性能分析[J]. 振    动与冲击,2019,38(22):95-100+116.
Shen Yujie, Liu Yanling, Chen Long, Yang Xiaofeng, Qiu Chengqun. Optimization Design and Performance Analysis of Vehicle ISD Suspension Based on High-Order Impedance Transfer Function [J] .Vibration and Shock, 2019,38 (22): 95-100 + 116.
[32] 朱柏霖,秦武,上官文斌,Subhash Rakheja.基于双横臂的1/4汽车模型及其等效模型的建模控制研究[J].振动与冲击, 2019,38(10):6-14.
Zhu Bailin, Qin Wu, Shangguan Wenbin, Subhash Rakheja.Research on Modeling Control of 1/4 Car Model and Its Equivalent Model Based on Double Wishbone [J] .Journal of Vibration and Shock, 2019,38 (10): 6-14
[33] 陈杰平,陈无畏,祝辉,等.基于MATLAB/SIMULINK的随机路面建模与不平度仿真[J].农业机械学报,2010,41(3):11-15.
Chen Jieping, Chen Wuwei, Zhu Hui, et al. Stochastic Pavement Modeling and Roughness Simulation Based on MATLAB/SIMULINK[J]. Transactions of the Chinese Society of Agricultural Machinery, 2010, 41(3): 11-15.
[34] 范政武,王铁,陈峙.基于人工鱼群算法的车辆平顺性优化分析[J].农业工程学报,2016,32(6):107-114.
Fan Zhengwu, Wang Tie, Chen Zhi. Optimization analysis of vehicle ride comfort based on artificial fish swarm algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 107-114.
[35] 陈龙,杨晓峰,汪若尘,等.改进的ISD三元件车辆被动悬架性能的研究[J].汽车工程,2014 36(3):340-345.
Chen Long, Yang Xiaofeng, Wang Ruochen, et al. Research on improved passive suspension performance of ISD three-element vehicle[J]. Automotive Engineering, 2014 36(3): 340-345.
[36] 马克. 汽车主动悬架的模糊控制策略研究[D].重庆理工大学,2018.
[37] 耿龙伟. 空气悬架自整定模糊PID控制策略及试验研究[D]. 扬州大学,2014.
[38] Zhang, L., Zhang, J.Q., Luo, T., Bi, Z.D., Yao, J. A Research on Comprehensive Performance Evaluation Method for Vehicle Suspension System, Automotive Engineering, 38 (12), 1494-1499, (2016).
[39] Wang, G., Chen, C.Z., Yu, S.B. Robust non-fragile finite-frequency H∞ static output-feedback control for active suspension systems, Mechanical Systems and Signal Processing, 91, 41-56, (2017).

PDF(3266 KB)

Accesses

Citation

Detail

段落导航
相关文章

/