间隙式油缸粘滞阻尼器阻尼特性建模与数值仿真分析

喻强1,徐登峰2,朱煜1,2,管高峰1,李强3

振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 161-167.

PDF(2463 KB)
PDF(2463 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 161-167.
论文

间隙式油缸粘滞阻尼器阻尼特性建模与数值仿真分析

  • 喻强1,徐登峰2,朱煜1,2,管高峰1,李强3
作者信息 +

Damping characteristic modeling and numerical simulation analysis of the viscous damper of a clearance hydrocylinder

  • YU Qiang1,XU Dengfeng2,ZHU Yu1,2,GUAN Gaofeng1,LI Qiang3
Author information +
文章历史 +

摘要

间隙式油缸粘滞阻尼器输出阻尼力较大、安全系数高、结构简单稳定、使用寿命长且制造成本低廉,是一种应用非常广泛的减震耗能装置。针对现实中阻尼器多自由度的需求,同时考虑压差流动和剪切流动的影响,并在活塞出现偏心的情况下,进行了阻尼特性建模。首先,基于阻尼介质流体的本构方程,计算平行平板间隙流体流动的流量。然后,选取合适的微小间隙单元并将其近似看作平行平板间隙流动,通过积分计算流过环形间隙的总流量,分别得到了阻尼器垂直方向和水平方向的阻尼力和阻尼系数表达式。数值仿真分析表明,当间隙较大时,剪切流动对阻尼特性的影响不可忽略,活塞偏心对垂直方向阻尼特性的影响较小,对水平方向阻尼特性的影响较为显著。

Abstract

The viscous damper of a clearance hydrocylinder is a very extensive application of isolation device, because of its large output damping force, long lifetime, high safe factor, simple structure and low cost. In practice, a damper is multi-freedom degree system. Considering the influence of pressure difference flow and shearing flow, the damping characteristic modeling was done while the piston was eccentric. First, the quantity of fluid flow in the clearance between parallel plates was calculated based on the constitutive equation of damping fluid. Then, appropriate tiny unit was chosen, and it was considered to the fluid flow in the clearance between parallel plates. The total quantity of fluid flow in the circular clearance was calculated by numerical integration and the expressions of damping force and damping coefficients in the vertical and horizontal directions were obtained. Numerical simulation analysis indicated the influence of shearing flow on the damping characteristic was not ignored while the clearance was larger. The influence of eccentricity on the damping characteristic in the vertical direction was small and the influence of eccentricity on the damping characteristic in the horizontal direction was significant.

关键词

阻尼器 / 流量 / 偏心 / 阻尼特性 / 数值仿真分析

Key words

damper / quantity / eccentricity / damping characteristic / numerical simulation analysis

引用本文

导出引用
喻强1,徐登峰2,朱煜1,2,管高峰1,李强3. 间隙式油缸粘滞阻尼器阻尼特性建模与数值仿真分析[J]. 振动与冲击, 2020, 39(20): 161-167
YU Qiang1,XU Dengfeng2,ZHU Yu1,2,GUAN Gaofeng1,LI Qiang3. Damping characteristic modeling and numerical simulation analysis of the viscous damper of a clearance hydrocylinder[J]. Journal of Vibration and Shock, 2020, 39(20): 161-167

参考文献

[1] Silveira M A, Maglieri D J, Brooks G W. Results of an Experimental Investigation of Small Viscous Dampers[J]. Technical Report Archive & Image Library, 1958, No. NACA-TN-4257.
[2] Crane H L, Hurt G J J, Elliott J M. Subsonic Flight Investigation of Methods to Improve the Damping of Lateral Oscillations by Means of a Viscous Damper in the Rudder System in Conjunction with Adjusted Hinge-moment Parameters[J]. Technical Report Archive & Image Library, 1958, No. NACA-TN-4193.
[3] Federico M M. Passive control technologies for seimic-resistant buildings in Europe[J]. Progress in Structural Engineering and Materials, 2001, 3(3): 277-287.
[4] Rittweger A, Albus J. Hornung E, et al. Mourey. Passive damping devices for aerospace structures[J]. Acta Astronautica, 2002, 50(10): 597–608.
[5] 张文学,黄荐,王景景. 斜拉桥面相对高度对粘滞阻尼器减震效果影响研究[J]. 振动与冲击,振动与冲击,2015,34(16):43-47.
ZHANG Wen-xue, HUANG Jian, WANG Jing-jing. The research of cable-stayed bridge’s relative height of deck effect on viscous damper’s seismic reduction behavior[J]. Journal of Vibration and Shock, 2015, 34(16): 43-47.
[6] 欧进萍,丁建华. 油缸间隙式粘滞阻尼器理论与性能试验[J]. 地震工程与工程振动,1999,19(4):82-89.
OU Jin-ping, DING Jian-hua. Theory and performance experiment of viscous damper of clearance hydrocylinder[J]. Earthquake Engineering and Engineering Vibration, 1999, 19(4): 82-89.
[7] 贾九红,沈小要,杜俭业,等. 粘弹性阻尼器的力学特性分析[J]. 振动与冲击,2007,26(10):101-103,191.
JIA Jiu-hong, SHEN Xiao-yao, DU Jian-ye, et al. Mechanical analysis of a visco-elastic damper[J]. Journal of Vibration and Shock, 2007, 26(10): 101-103, 191.
[8] 贾九红,沈小要,杜俭业,等. 粘性流体阻尼器的设计与试验[J]. 机械工程学报,2008,44(6):194-198.
JIA Jiu-hong, SHEN Xiao-yao, DU Jian-ye, et al. Design and Experimental Research on Fluid Viscous Dampers[J]. Chinese Journal of Mechanical Engineering, 2008, 44(6): 194-198.
[9] Kim D H, Park J W, Lee G S, et al. Active impact control system design with a hydraulic damper[J]. Journal of Sound and Vibration, 2002, 250(3): 485-501.
[10] 张志广,谢竞慧,陈彦北,等. 硅油的种类及用量对硅橡胶阻尼性能的影响[J]. 合成橡胶工业,2016,39(5):386-390.
ZHANG Zhi-guang, XIE Jing-hui, CHEN Yan-bei, et al. Effect of type and amount of silicone oil on damping property of silicone rubber[J]. China Synthetic Rubber Industry, 2016, 39(5): 386-390.
[11] Suciu C V, Iwatsubo T, Deki S. Investigation of a colloidal damper[J]. Journal of Colloid and Interface Science. 2003, 239: 62-80.
[12] 胥永刚. 抗冲型粘滞流体阻尼器及其动力学性能的研究[D]. 上海:上海交通大学,2007.
[13] 王赣城,焦素娟,孙靳雅,等. 弹性胶泥阻尼器的冲击实验研究及建模分析[J]. 噪声与振动控制,2010,30(6):55-57.
WANG Gan-cheng, JIAO Su-juan, SUN Jin-ya, et al. Shock Experiments Research and Modeling Analysis of Elastomer Damper[J]. Noise and Vibration Control, 2010, 30(6): 55-57.
[14] 孙靖雅,焦素娟,张磊,等. 粘滞流体阻尼器冲击缓冲特性研究[J]. 振动与冲击,2013,32(14):196-199.
SUN Jin-ya, JIAO Su-juan, ZHANG Lei, et al. Investigation of the shock absorption characteristics of a viscous fluid damper[J]. Journal of Vibration and Shock, 2013, 32(14): 196-199.
[15] 朱煜,喻强,徐登峰,等. 串联倒摆的空气弹簧隔振器中倒摆的稳定性分析[J]. 振动与冲击,2018, 37(6):188-194.
ZHU Yu, YU Qiang, XU Deng-feng, et al. Stability analysis of the inverted pendulum in the air spring vibration isolator in series with the inverted pendulum[J]. Journal of Vibration and Shock, 2018, 37(6): 188-194.
[16] 喻强,徐登峰,朱煜,等. 串联倒摆的空气弹簧隔振器水平方向动力学分析[J]. 振动与冲击,2019, 38(14):176-180..
YU Qiang, XU Deng-feng, ZHU Yu, et al. Dynamics analysis in the horizontal direction of the air spring vibration isolator in series with the inverted pendulum[J]. Journal of Vibration and Shock, 2019, 38(14): 176-180..
[17] 徐登峰,朱煜,喻强,等. 并联阻尼油缸的隔振装置[P]. 中国专利:CN206530641U,2017.
XU Deng-feng, ZHU Yu, YU Qiang, et al. Isolation device in parallel with the damping hydrocylinder[P]. Chinese Patent: CN206530641U, 2017.

PDF(2463 KB)

Accesses

Citation

Detail

段落导航
相关文章

/