基于自适应噪声消除与自相关峭度图的行星轮轴承内圈故障诊断

刘珍,郭瑜,伍星

振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 183-189.

PDF(2155 KB)
PDF(2155 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 183-189.
论文

基于自适应噪声消除与自相关峭度图的行星轮轴承内圈故障诊断

  • 刘珍,郭瑜,伍星
作者信息 +

Fault diagnosis of planet bearing inner rings based on selfself-adaptive noise cancellation and autogram

  • LIU Zhen,GUO Yu,WU Xing
Author information +
文章历史 +

摘要

行星齿轮箱中,行星轮轴承故障信息往往被淹没在复杂的齿轮啮合振动及背景噪声中,另一方面,传统的快速谱峭度(Fast Kurtogram,FK)方法在包络解调共振解调频带确定上存在一定局限性,导致行星轮轴承的故障提取较为困难。为此,提出一种基于自适应噪声消除(Self-Adaptive Noise Cancelling, SANC)与自相关峭度图(Autogram)的行星轮轴承故障诊断方法。首先,通过SANC分离出轴承信号;再基于Autogram对分离出的轴承信号进行优化共振解调频带选择,结合包络分析提取行星轮轴承内圈故障特征。试验研究表明,Autogram能够克服FK等传统方法在信噪比较低情况下对优化共振解调频带选择存在的缺陷,对行星轮轴承内圈的故障特征进行有效提取。

Abstract

In planetary gearboxes, planetary bearing fault information is often submerged in complex gear meshing vibrations and background noise. On the other hand, the traditional Fast Kurtogram (FK) method has certain limitations in determination of the resonance demodulation frequency band, which makes fault extraction of planetary bearing difficult. To solve this problem, a fault diagnosis method for planetary bearings based on Self-Adaptive Noise Cancelling (SANC) and Autogram was proposed. Firstly, the bearing signal was separated by SANC; then the optimized resonance demodulation band was selected based on Autogram, and the fault feature was extracted by the envelope analysis. Experiments show that Autogram can overcome the defects of FK and other traditional methods in optimizing the resonant demodulation band under low signal-to-noise ratio, and effectively extract fault characteristic of the inner ring of a planetary bearing.

关键词

行星轮轴承 / SANC / FK / Autogram / 故障诊断

Key words

planet bearings / SANC / autogram / FK / fault diagnosis

引用本文

导出引用
刘珍,郭瑜,伍星. 基于自适应噪声消除与自相关峭度图的行星轮轴承内圈故障诊断[J]. 振动与冲击, 2020, 39(20): 183-189
LIU Zhen,GUO Yu,WU Xing. Fault diagnosis of planet bearing inner rings based on selfself-adaptive noise cancellation and autogram[J]. Journal of Vibration and Shock, 2020, 39(20): 183-189

参考文献

[1] Feng Z P, Ma H Q, Zuo M J. Vibration signal models for fault diagnosis of planet bearings [J]. Journal of Sound and Vibration. 2016, 370: 372-393.
[2] 李辉, 潘宏侠, 郑海起. Hilbert-Huang变换在行星齿轮箱故障诊断中的应用[J]. 测试技术学报, 2006, 20(02): 53-58.
LI Hui, PAN Hong-xia, ZHENG Hai-qi. Application of Hilbert-Huang transform to faults diagnosis of planetary gearbox [J]. Journal of Test and Measurement Technology, 2006, 20 (02): 53-58.
[3] 田广, 唐力伟, 栾军英,等. 基于时频分布的行星齿轮箱滚动轴承故障诊断研究[J]. 机械强度, 2007, 29(1):152-155.
TIAN Guang, TANG Li-wei, LUAN Jun-ying. Application of fault diagnosis based on time-frequency distritution to rolling bearings of planetary gear box [J]. Journal of Mechanical Strength, 2007, 29(1):152-155.
[4] 贺东台, 郭瑜, 伍星, 等. 基于自参考自适应消噪的行星轮轴承内圈故障特征提取[J]. 振动与冲击, 2018, 37(17):109-114.
HE Dong-tai, GUO Yu, WU Xing, et al. Extracted Feature of Fault Planet Bearing Inner Race Based on Self-adaptive Noise Cancellation[J]. Journal of Vibration and Shock, 2018, 37(17):109-114.
[5] Antoni J. The infogram: Entropic evidence of the signature of repetitive transients[J]. Mechanical Systems and Signal Processing, 2016, 74: 73-94.
[6] Saxena A, Wu B, Vachtsevanos G. A methodology for analyzing vibration data from planetary gear systems using complex Morlet wavelets[C]. Proceedings of the 2005, American Control Conference, 2005. IEEE, 2005: 4730-4735.
[7] Zhang Y, Lu W, Chu F. Planet gear fault localization for wind turbine gearbox using acoustic emission signals[J]. Renewable Energy, 2017, 109: 449-460.
[8] 王况, 王科盛, 左明健. 基于阶次分析技术的行星齿轮箱非平稳振动信号分析[J]. 振动与冲击, 2016, 35(5): 140-145.
WANG Kuang, WANG Ke-sheng, ZUO Ming-jian. Fault Diagnosis of a Planetary Gearbox Based on Order Tracking[J]. Journal of Vibration and Shock, 2016, 35(5): 140-145.
[9] 雷亚国, 汤伟, 孔德同, 等. 基于传动机理分析的行星齿轮箱振动信号仿真及其故障诊断[J]. 机械工程学报, 2014, 50(17): 61-68.
LEI Ya-guo, TANG Wei, KONG De-tong, et al. Vibration Signal Simulation and Fault Diagnosis of Planetary Gearboxes Based on Transmission Mechanism Analysis[J]. Journal of Mechanical Engineering, 2014, 50(17): 61-68.
[10] Randall R B, Antoni J. Rolling element bearing diagnostics—A tutorial[J]. Mechanical systems and signal processing, 2011, 25(2): 485-520.
[11] Antoni J, Randall R.B. Unsupervised noise cancellation for vibration signals: part I—evaluation ofadaptive algorithms[J]. Mechanical Systems and Signal Processing, 2004, 18 (1), 89–101.
[12] Priestley M.B. Spectral Analysis and Time Series[M]. Academic Press, New York, 1981.
[13] Guo Y, Na J, Li B, et al. Envelope extraction based dimension reduction for independent component analysis in fault diagnosis of rolling element bearing[J]. Journal of Sound and Vibration, 2014, 333:2983-2994.
[14] Zeidler J R. Performance analysis of LMS adaptive prediction filters[J]. Proceedings of the IEEE, 1990, 78(12): 1781-1806.
[15] Ho D. Bearing diagnostics and self-adaptive noise cancellation[M]. University of New South Wales, 1999.
[16] Antoni J, Randall R B. Optimisation of SANC for separating gear and bearing signals[C]. Proceedings of the 14th International Congress. 2001, 1: 89-96.
[17] Haykin S S. Adaptive filter theory[M]. Pearson Education India, 2005.
[18] Smith W A, Randall R B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64: 100-131.
[19] Barszcz T, JabŁoński A. A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 431-451.
[20] Antoni J. The spectral kurtosis: a useful tool for characterising non-stationary signals[J]. Mechanical systems and signal processing, 2006, 20(2): 282-307.
[21] Antoni J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007, 21(1): 108-124.
[22] Moshrefzadeh A, Fasana A. The Autogram: An effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis[J]. Mechanical Systems and Signal Processing, 2018, 105: 294-318.

PDF(2155 KB)

Accesses

Citation

Detail

段落导航
相关文章

/