冲击荷载作用下泊松比对脆性材料破坏影响的近场动力学分析

黄小华,李双,金艳丽,叶兆青

振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 204-215.

PDF(2351 KB)
PDF(2351 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 204-215.
论文

冲击荷载作用下泊松比对脆性材料破坏影响的近场动力学分析

  • 黄小华,李双,金艳丽,叶兆青
作者信息 +

Effect of Poisson’s ratio on the fracture of brittle materials under impact loading via peridynamics

  • HUANG Xiaohua,LI Shuang,JIN Yanli,YE Zhaoqing
Author information +
文章历史 +

摘要

键基近场动力学(peridynamic,PD)方法已证实能模拟固体材料中裂纹自发地萌生和扩展,但存在特定泊松比的限制。提出了单键双参数键基PD模型,它继承了传统键基PD简单性、稳定性等特点,并拓展了泊松比的适用范围。通过变形的静力定量计算、冲击荷载作用下Kalthoff-Winkler试验等裂纹扩展过程的模拟,验证了该模型。进一步就平行双裂纹薄板的冲击破坏现象,研究了泊松比对其破坏的影响。结果表明:冲击荷载一定时,材料泊松比的增大,会导致薄板起裂提前,其抗冲击破坏能力变弱,同时泊松比改变破坏路径致使薄板贯通延迟,破坏总时间延长,贯通速度降低;冲击荷载较大时,泊松比的变化会对平行双裂纹脆性薄板的裂纹扩展路径产生明显影响。

Abstract

The bond-based peridynamics has been shown to simulate the spontaneous initiation and propagation of cracks in solid materials, but there is a limit on the fixed Poisson’s ratio. A two-parameter bond-based PD method was proposed, which inherits the simplicity and stability of the traditional PD and expands the range of Poisson’s ratio. The model was verified by the quantitative calculation of static deformation and simulation of the crack propagation process such as the Kalthoff-Winkler test under impact loading. Furthermore, the effect of Poisson’s ratio on the fracture of parallel double cracked plates was studied. The results show that when the impact loading is constant, increase in Poisson’s ratio of brittle material will result in earlier initiation of cracks, and its impact resistance is weaken. Poisson’s ratio changes crack propagation path of the plate, which prolongs the time of fracture and reduces the penetration velocity. When impact loading is large, Poisson’s ratio will have significant influence on crack propagation path of the parallel double cracks brittle material.

关键词

键基近场动力学 / 双参数 / 泊松比 / 平行双裂纹 / 冲击荷载

Key words

bond-based peridynamics / two-parameter / Poisson’s ratio / parallel double cracks / impact loading

引用本文

导出引用
黄小华,李双,金艳丽,叶兆青. 冲击荷载作用下泊松比对脆性材料破坏影响的近场动力学分析[J]. 振动与冲击, 2020, 39(20): 204-215
HUANG Xiaohua,LI Shuang,JIN Yanli,YE Zhaoqing. Effect of Poisson’s ratio on the fracture of brittle materials under impact loading via peridynamics[J]. Journal of Vibration and Shock, 2020, 39(20): 204-215

参考文献

[1] 帅晓蕾. 冲击荷载作用下混凝土动力性能试研究及有限元分析[D]. 湖南大学, 2013.
    SHUI Xiaolei. Experimental study and finite element analysis of concrete dynamic performance under impact loading [D]. Hunan University, 2013.
 [2] 刘海峰,宁建国. 冲击荷载作用下混凝土动态本构模型的研究[J]. 工程力学. 2008, 25(12): 135-140.
    LIU Haifeng, NING Jianguo. Dynamic constitutive model of concrete subjected to impact loading[J]. Engineering Mechanics. 2008, 25(12): 135-140.
 [3] 谷新保,周小平,徐潇. 高速运动裂纹扩展和分叉现象的近场动力学数值模拟[J]. 应用数学和力学. 2016(07): 729-739.
    GU Xinbao, ZHOU Xiaoping, XU Wei. Numerical Simulation of High-Speed Crack Propagating and Branching Phenomena Based on Peridynamics [J]. Applied Mathematics and Mechanics. 2016(07): 729-739.
 [4] REN H, ZHUANG X, CAI Y, et al. Dual-horizon peridynamics[J]. International Journal for Numerical Methods in Engineering. 2016, 108(12): 1451-1476.
 [5] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of Mechanics Physics of Solids. 2000, 48(1): 175-209.
 [6] SILLING S A, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics[J]. Computers & Structures. 2005, 83(17-18): 1526-1535.
 [7] SILLING S A. Dynamic fracture modeling with a meshfree peridynamic code[J]. Computational Fluid & Solid Mechanics. 2003: 641-644.
 [8] MADENCI E, OTERKUS E. Peridynamic Theory and Its Applications[M]. Springer New York, 2014.
 [9] DEMMIE, PAUL N, FOSTER, et al. Concrete Fracture and Failure Modeling with Peridynamics.[J]. 2007.
[10] 沈峰,章青,黄丹,等. 冲击荷载作用下混凝土结构破坏过程的近场动力学模拟[Z]. 宁波: 2011237-343.
    SHEN Feng, ZHANG Qing, HUANG Dan, et al. Peridynamics simulation of concrete structure failure process under impact loading: The 20th National Conference on Structural Engineering [Z]. Ningbo: 2011237-343.
[11] 章青,顾鑫,郁杨天. 冲击载荷作用下颗粒材料动态力学响应的近场动力学模拟[J]. 力学学报. 2016, 48(1): 56-63.
    ZHANG Qing, GU Xin, YU Peridynamic simulation for dynamic response of granular materials under impact loading [J]. Chinese Journal of Theoretical, 2016, 48(1): 56-63.
[12] 顾鑫,章青,黄丹. 基于近场动力学方法的混凝土板侵彻问题研究[J]. 振动与冲击. 2016, 35(6): 52-58.
    GU Xin, ZHANG Qing, HUANG Dan. Peridynamics used in solving penetration problem of concrete slabs[J]. Journal of Vibration And Shock. 2016, 35(6): 52-58.
[13] SILLING S A, DEMMIE P N, WARREN T L. Peridynamic Simulation of High-Rate Material Failure.[J]. 2007.
[14] GERSTLE W, SAU N, SILLING S. Peridynamic modeling of plain and reinforced concrete structures[C]. 2005.
[15] SILLING S A, EPTON M, WECKNER O, et al. Peridynamic States and Constitutive Modeling[J]. Journal of Elasticity. 2007, 88(2): 151-184.
[16] HAN F, LUBINEAU G, YAN A, et al. A morphing approach to couple state-based peridynamics with classical continuum mechanics[J]. Computer Methods in Applied Mechanics & Engineering. 2016, 301: 336-358.
[17] BIE Y H, CUI X Y, LI Z C. A coupling approach of state-based peridynamics with node-based smoothed finite element method[J]. Computer Methods in Applied Mechanics & Engineering. 2018, 331: 675-700.
[18] WANG Y, ZHOU X, SHOU Y. The modeling of crack propagation and coalescence in rocks under uniaxial compression using the novel conjugated bond-based peridynamics[J]. International Journal of Mechanical Sciences. 2017, 128.
[19] WANG Y, ZHOU X, WANG Y, et al. A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids[J]. International Journal of Solids and Structures. 2018, 134: 89-115.
[20] ZHU Q, NI T. Peridynamic formulations enriched with bond rotation effects[J]. International Journal of Engineering Science. 2017, 121: 118-129.
[21] PRAKASH N, SEIDEL G D. A novel two-parameter linear elastic constitutive model for bond based peridynamics[Z]. 2015.
[22] LIU W, HONG J W. Discretized peridynamics for linear elastic solids[J]. Computational Mechanics. 2012, 50(5): 579-590.
[23] GERSTLE W, SAU N, SILLING S. Peridynamic modeling of concrete structures[J]. Nuclear Engineering & Design. 2007, 237(12–13): 1250-1258.
[24] GERSTLE W, SAU N, AGUILERA E. Micropolar Peridynamic Constitutive Model for Concrete[J]. 2007.
[25] HA Y D, BOBARU F. Studies of dynamic crack propagation and crack branching with peridynamics[J]. International Journal of Fracture. 2010, 162(1-2): 229-244.
[26] J. F. KALTHOFF S W. Failure mode transition at high rates of shear loading, DGM Informationsgesellschaft mbH, in: Impact Loading and Dynamic Behavior of Materials. [J]. Impact Loading and Dynamic Behavior of Materials. 1988: 185-195.
[27] YANG S Q. Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure[J]. Engineering Fracture Mechanics. 2011, 78(17): 3059-3081.
[28] WONG N, EINSTEIN H H. Crack coalescence in molded gypsum and Carrara marble[C]. 2007.
[29] 牛彦泽,徐业鹏,黄丹. 双轴动载作用下脆性裂纹扩展问题的近场动力学建模与分析[J]. 工程力学. 2018(10): 249-256.
    NIU Yanze, XU Yepeng, HUANG Dan. Peridynamic modelling and analysis for crack propagation in brittle materials subjected to biaxial dynamic load[J]. Engineering Mechanics. 2018(10): 249-256.

PDF(2351 KB)

1038

Accesses

0

Citation

Detail

段落导航
相关文章

/