基于齿槽转矩的永磁同步电主轴动态性能试验研究

李松生,杨焕钊,何国庆,张国烨,刘扬扬,郑志强

振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 216-222.

PDF(2153 KB)
PDF(2153 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 216-222.
论文

基于齿槽转矩的永磁同步电主轴动态性能试验研究

  • 李松生,杨焕钊,何国庆,张国烨,刘扬扬,郑志强
作者信息 +

Experimental study on dynamic performance of permanent magnet synchronous electric spindles based on cogging torque

  • LI Songsheng,YANG Huanzhao,HE Guoqing,ZHANG Guoye,LIU Yangyang,ZHENG Zhiqiang
Author information +
文章历史 +

摘要

永磁同步电机应用于高速电主轴,可以提高电主轴的效率、功率等,但永磁同步内装电机的齿槽转矩会引起电主轴的振动和噪声等问题。基于永磁同步电机理论分析了齿槽转矩的影响因素和抑制措施,针对分段对齐安装的直极转子与分段错位安装的斜极转子两种不同内装电机结构形式的永磁同步电主轴,分别对它们的齿槽转矩进行了理论分析和试验测试,在此基础上重点对它们的噪声、外壳振动以及转速的平稳性等动态性能进行了系统试验研究。结果表明,内装电机的齿槽转矩是影响电主轴振动、噪声的重要因素,在相同条件下,内装电机采用分段斜极转子可以大幅度削弱齿槽转矩的作用,有效减小电主轴运行过程中的振动和噪声水平,提高运行速度的稳定性。

Abstract

Permanent magnet synchronous motors (PMSM) used in high-speed electric spindle can improve the efficiency and power of electric spindles, but their cogging torque can cause vibration and noise problems. Based on the theory of PMSM, influencing factors and restraining measures of cogging torque were discussed. Aiming at the permanent magnet synchronous electric spindles (PMSES) with two different rotor structures of built-in PMSM, a step-skewed rotor and a non-skewed rotor, their cogging torques were analyzed theoretically and tested experimentally. On this basis, the dynamic performances of their noise, vibration and speed stability were emphatically studied. The results show that the cogging torque of built-in PMSM is an important factor affecting the vibration and noise of PMSES. Under the same conditions, the step-skewed rotor structure can effectively weaken the cogging torque of PMSES, reduce the vibration and noise, and improve speed stability.

关键词

永磁同步电主轴 / 齿槽转矩 / 转子结构 / 振动噪声 / 动态性能

Key words

PMSES / cogging torque / rotor structure / vibration and noise / dynamic performance

引用本文

导出引用
李松生,杨焕钊,何国庆,张国烨,刘扬扬,郑志强. 基于齿槽转矩的永磁同步电主轴动态性能试验研究[J]. 振动与冲击, 2020, 39(20): 216-222
LI Songsheng,YANG Huanzhao,HE Guoqing,ZHANG Guoye,LIU Yangyang,ZHENG Zhiqiang. Experimental study on dynamic performance of permanent magnet synchronous electric spindles based on cogging torque[J]. Journal of Vibration and Shock, 2020, 39(20): 216-222

参考文献

[1] 李松生, 杨柳欣, 吴梅英. 数控机床用高速电主轴技术的现状与发展趋势[J]. 世界制造技术与装备市场, 2003(5):13-15.
 LI Songsheng, YANG Liuxin, WU Meiying. The state and development about the high-frequency motor spindles for NC machine tools[J]. World Manufacturing Engineering & Market, 2003(5):13-15.
 [2] 蔡黎明. 永磁同步电动机电磁振动与噪声的研究[D]. 广东:广东工业大学, 2016.
 CAI Liming. Researches on electromagnetic vibration and noise in permanent magnet synchronous motor[D]. Guangdong:Guangdong University of Technology, 2016.
 [3] HOUNG J Y, CHEN K C, HSU W H. Shape optimization of closed slot type permanent magnet motors for cogging torque reduction using evolution strategy[J]. IEEE Transactions on Magnetics, 1997, 33(2):1912-1915.
 [4] 张国烨. 高速电主轴内置永磁同步电机关键技术研究与性能分析[D]. 上海:上海大学, 2018.
 ZHANG Guoye. Study on key technology and performance analysis of built-in permanent magnet synchronous motor in high-speed electric spindle[D]. Shanghai:Shanghai University, 2018.
 [5]  邹文, 竺韵德, 张钢等. 基于Ansoft Maxwell的盘式永磁电机齿槽转矩的优化设计[J]. 微特电机, 2015, 43(12):10-13
 ZOU Wen, ZHU Yunde, ZHANG Gang, et al. Optimization of cogging torque for disc-type permanent magnet motor based on Ansoft Maxwell[J]. Small & Special Electrical Machines, 2015, 43(12):10-13.
 [6] WANG Daohan, WANG Xiuhe, QIAO Dongwei, et al. Reducing cogging torque in surface-mounted permanent-magnet motors by nonuniformly distributed teeth method[J]. Magnetics IEEE Transactions on, 2011, 47(9):2231-2239.
 [7] XIA Changliang, CHEN Zhenfei, SHI Tingna, et al. Cogging torque modeling and analyzing for surface-mounted permanent magnet machines with auxiliary slots[J]. IEEE Transactions on Magnetics, 2013, 49(9):5112-5123.
 [8] 夏加宽, 于冰, 黄伟. 减小齿槽转矩的永磁电机结构优化设计[J]. 电气技术, 2009(12):23-25.
 XIA Jiakuan, YU Bing, HUANG Wei. Optimization of the structure to reduce the cogging torque in PM motors[J]. Electrical Engineering, 2009(12):23-25.
 [9] 张颖. 斜槽对永磁无刷直流电机齿槽转矩的影响[J]. 广西轻工业, 2008, 24(11):38-39.
 ZHANG Ying. Effect of stator chute on cogging torque of permanent magnet brushless DC motor[J]. Light Industry Science and Technology, 2008, 24(11):38-39.
[10] ANGLE M G, LANG J H, KIRTLEY J L, et al. Cogging torque reduction in permanent-magnet synchronous machines with skew[C]// XXII International Conference on Electrical Machines. 2016.
[11] 黄守道, 刘婷, 欧阳红林等. 基于槽口偏移的永磁电机齿槽转矩削弱方法[J]. 电工技术学报, 2013, 28(03):99-106.
 HUANG Shoudao, LIU Ting, OUYANG Honglin, et al. A method for reducing cogging torque by slot-opening shift in permanent magnet motors[J]. Transactions of China Electrotechnical Society, 2013, 28(03):99-106.
[12] LI G J, REN B, ZHU Z Q. Cogging torque and torque ripple reduction of modular permanent magnet machines[C]// Icem. 2016.
[13] ISLAM R, HUSAIN I, FARDOUN A, et al. Permanent-magnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction[J]. IEEE Transactions on Industry Applications, 2009, 45(1):152-160.
[14] 牛凯, 付江寒, 崔立英等. 高速精密电主轴用永磁同步电动机的设计及性能分析[J]. 制造技术与机床, 2015(7):50-54.
 NIU Kai, FU Jianghan, CUI Liying et al. Design and performance analysis of permanent magnet synchronous motors in hign-speed precision electric spindles[J]. Manufacturing Technology & Machine Tool, 2015(7): 50-54.
[15] 陈小军, 肖曙红, 吴利杰. 超高速微细切削电主轴内装式永磁无刷直流电机设计研究[J]. 微电机, 2013, 46(2):24-28.
 CHEN Xiaojun, XIAO Shuhong, WU Lijie. Ultra hign speed micro-cutting electric spindle design and analysis of interior permanent magnet brushless DC motor[J]. Micromotors, 2013, 46(2):24-28.
[16] 李卫民, 刘阳, 陈静等.基于转子分段斜极的齿槽转矩优化设计[J]. 辽宁工业大学学报(自然科学版), 2017, 37(05):307-311.
 LI Weimin, LIU Yang, CHEN Jing, et al. Optimal design of cogging torque based on step skewing of rotor[J]. Journal of Liaoning Institute of Technology(Natural Science). 2017, 37(05):307-311.
[17] 赵军. 阶次分析法在船用旋转机械状态监测和故障诊断中的应用[J]. 机电工程技术, 2016, 45(8):157-159.
 ZHAO Jun. Application of order analysis in the condition monitoring and fault diagnosis of marine rotating machinery [J]. Mechanical & Electrical Engineering Technology. 2016, 45(8):157-159.
[18] 古成中, 刘勇, 罗日荣等. 船舶轴系弹性支撑振动过大原因及对策[J]. 中国航海, 2018, 41(1):34-37.
 GU Chengzhong, LIU Yong, LUO Rirong, et al. Causes and solutions of vibration in resiliently mounted propeller shaft system[J]. Navigation of China. 2018, 41(1):34-37.
[19] JUNG J W, KIM D J, HONG J P, et al. Experimental verification and effects of step skewed rotor type IPMSM on vibration and noise[J]. IEEE Transactions on Magnetics, 2011, 47(10):3661-3664.
[20] LI Songsheng, SHEN Yuan, HE Qiang. Study of the thermal influence on the dynamic characteristics of the electric spindle system[J]. Advances in Manufacturing, 2016, 4(4):1-8.
[21] 舒波夫. 电机的噪声和振动[M]. 沈官秋 译, 北京:机械工业出版社, 1980.
 Shupov. Motor noise and vibration[M]. SHEN Guanqiu, Trans. Beijing:China Machine Press, 1980.
[22] 唐任远. 现代永磁电机理论与设计[M]. 北京:机械工业出版社, 1997.
 TANG Renyuan. Modern permanent magnet machines—Theory and design[M]. Beijing:China Machine Press, 1997.

PDF(2153 KB)

Accesses

Citation

Detail

段落导航
相关文章

/