城市中心高层双塔建筑风效应及风振响应数值模拟研究

闫渤文,李大隆,鄢乔,汪之松,周绪红

振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 223-231.

PDF(2516 KB)
PDF(2516 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 223-231.
论文

城市中心高层双塔建筑风效应及风振响应数值模拟研究

  • 闫渤文,李大隆,鄢乔,汪之松,周绪红
作者信息 +

Numerical simulations of wind effects and wind-induced responses on twin tall buildings in an urban area

  • YAN Bowen,LI Dalong,YAN Qiao,WANG Zhisong,ZHOU Xuhong
Author information +
文章历史 +

摘要

本文基于计算流体动力学方法(Computational Fluid Dynamics,简称CFD)与有限元方法(Finite Element Method,简称FEM),对城市区域的高层双塔建筑风荷载以及风振响应问题开展了系统的研究。首先,本文提出了基于刚度映射算法的CFD/FEM单向耦合的高层建筑风效应及舒适度评估分析框架;然后,采用该分析框架研究了位于城市中心的高层双塔建筑围护结构风荷载及主体结构风振响应,并结合高层建筑结构规范对其位移幅值及风振舒适度进行了合理评估。结果表明:基于数值模拟的分析框架不仅能够准确地考虑真实的城市地貌,并且可以高效地开展具有复杂外形的高层建筑风荷载取值、风振响应计算以及舒适度评估分析;考虑气动干扰效应的某城市中心高层双塔建筑的风振位移响应幅值及风振舒适度评估结果满足相关规范的要求;由于考虑真实城市地貌、结构复杂气动外形以及气动干扰等因素,本文的数值模拟结果与我国荷载规范规定的风振系数相比偏小。因此,本文提出的CFD/FEM单向耦合数值模拟方法能够高效地开展高层建筑结构的抗风设计,并获得经济合理的分析结果。

Abstract

Based on Computational Fluid Dynamics (CFD) and the Finite Element Method (FEM), this study investigates wind effects on and wind-induced vibration of twin tall buildings in an urban area. Firstly, this study proposes a complete analysis framework of wind effects on and wind-induced response of tall buildings using one-way coupled CFD/FEM based on the stiffness mapping algorithm. And then, considering realistically urban terrain conditions, the wind loads on the building envelope and wind-induced responses of twin tall buildings were obtained and the habitant comfort was assessed according to the Chinese wind code using the proposed framework. The results show that the proposed framework can provide a cost-effective way for wind load estimation on and wind-induced response predictions of tall buildings as well as occupant comfort assessment. It was found that wind-induced displacement and vibration of the twin tall buildings could satisfy relevant specifications in the Chinese codes and standards. Furthermore, the gust loading factors of the twin tall buildings obtained from the numerical simulations are smaller than those specified in the Chinese wind code. Due to the realistic urban terrains, complex building shape and aerodynamic interference were considered in the numerical simulations. The proposed one-way coupled CFD/FEM approach enables engineers and researchers involved in the wind-resistant design of tall buildings to obtain economic and reasonable results for practical practices.

关键词

高层双塔建筑 / 城市区域 / CFD/FEM单向耦合 / 风效应 / 风振响应

Key words

twin tall building / urban area / one-way coupled CFD/FEM / wind effects / wind-induced vibration

引用本文

导出引用
闫渤文,李大隆,鄢乔,汪之松,周绪红. 城市中心高层双塔建筑风效应及风振响应数值模拟研究[J]. 振动与冲击, 2020, 39(20): 223-231
YAN Bowen,LI Dalong,YAN Qiao,WANG Zhisong,ZHOU Xuhong . Numerical simulations of wind effects and wind-induced responses on twin tall buildings in an urban area[J]. Journal of Vibration and Shock, 2020, 39(20): 223-231

参考文献

[1] Sparks P R, Schiff S D, Reinhold T A. Wind damage to envelopes of houses and consequent insurance losses[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 53(1/2):145-155.
 [2] 中华人民共和国住房和城乡建设部. 高层建筑混凝土结构技术规程[M]. 中国建筑工业出版社, 2011.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical Specification for Concrete Structures of Tall Building[M]. China Architecture & Building Press, 2011.
 [3] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范[M]. 中国建筑工业出版社, 2012.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Load Code for the Design of Building Structures[M]. China Architecture & Building Press, 2012.
 [4] Bailey P A, Kwok K C S. Interference excitation of twin tall buildings[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1985, 21(3):323-33
 [5] Józ'wiak R, Kacprzyk J, Zurański J A. Wind tunnel investigations of interference effects on pressure distribution on a building[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 57(2/3):159-166.
 [6] Khanduri A C, Stathopoulos T, Bedard C. Wind-induced interference effects on buildings: a review of the state-of-the-art[J]. Engineering Structures,1998,20(7):617-630.
 [7] Kim W, Tamura Y, Yoshida A. Interference effects on local peak pressures between two buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(5):584-600.
 [8] 朱剑波, 谢壮宁. 群体高层建筑的峰值风压分布特征[J]. 建筑结构学报, 2012, 33(1):18-26.
Zhu J B, Xie Z N. Distribution characteristics of peak wind pressures on tall buildings[J]. Journal of Building Structures, 2012, 33(1):18-26.
 [9] 谢壮宁, 朱剑波. 群体高层建筑的平均风压分布特征[J]. 华南理工大学学报 (自然科学版), 2011, 39(4):128-134.
Xie Z N, Zhu J B. Distribution characteristics of mean wind pressures on tall buildings[J]. Journal of South China University of Technology (Natural Science Edition), 2011, 39(4):128-134.
 [10] 谢壮宁, 朱剑波. 并列布置超高层建筑间的风压干扰效应[J]. 土木工程学报, 2012(10):23-30.
Xie Z N, Zhu J B. Interference effects of wind pressures on tall buildings in side-by-side arrangement[J]. China Civil Engineering Journal, 2012(10):23-30.
 [11] Hui Y, Yoshida A, Tamura Y. Interference effects between two rectangular-section high-rise buildings on local peak pressure coefficients[J].Journal of Fluids and Structures, 2013, 37(1):120-133.
 [12] Yan B, Li Q S. Wind tunnel study of interference effects between twin super-tall buildings with aerodynamic modifications[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2016, 156:129-145.
 [13] 谢壮宁, 顾明, 倪振华. 不同断面宽度群体高层建筑的动力干扰效应: 第1部分: 顺风向响应[J]. 建筑结构学报, 2003, 24(4) : 8-16.
Xie Z N, Gu M, Ni Z H. Wind-induced dynamic interference effects on different size tall buildings: part on on a buildiresponse[J]. Journal of Building Structures, 2003, 24(4):8-16.
 [14] 谢壮宁, 顾明, 倪振华. 不同断面宽度群体高层建筑的动力干扰效应: 第2部分: 横风向响应[J]. 建筑结构学报, 2003, 24(5):50-57.
Xie Z N,Gu M, Ni Z H. Wind-induced dynamic interference effects on different size tall buildings: part on across-wind response[J]. Journal of Building Structures, 2003, 24 (5):50-57.
 [15] Blocken B, Persoon J. Pedestrian wind comfort around a large football stadium in an urban environment: CFD simulation, validation and application of the new Dutch wind nuisance standard[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2009, 97(5–6):255-270.
 [16] Blocken B. 50 years of Computational Wind Engineering: Past, present and future ☆[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2014, 129(6):69-102.
 [17] Huang S, Li Q S, Xu S. Numerical evaluation of wind effects on a tall steel building by CFD[J]. Journal of Constructional Steel Research, 2008, 63(5):612-627.
 [18] Murakami S. Comparison of various turbulence models applied to a bluff body[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1993, s 46–47(3):21-36.
 [19] Tominaga Y, Mochida A, Murakami S, et al. Comparison of various revised k – ε, models and LES applied to flow around a high-rise building model with 1:1:2 shape placed within the surface boundary layer[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2008, 96(4):389-411.
 [20] Huang S H, Li Q S. Large Eddy Simulation of Wind Effects on a Super-Tall Building[J]. Wind and Structure, 2010, 13, 557–580.
 [21] Yan B W, Li Q S. Inflow turbulence generation methods with large eddy simulation for wind effects on tall buildings[J]. Computers & Fluids, 2015, 116:158-175.
 [22] Li C, Li Q S, Huang S H, et al. Large Eddy Simulation of wind loads on a long-span spatial lattice roof[J]. Wind & Structures An International Journal, 2010, 13(1):57-82.
 [23] Lu C L, Li Q S, Huang S H, et al. Large eddy simulation of wind effects on a long-span complex roof structure[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2012, 100(1):1-18.
 [24] Nozu T, Tamura T, Okuda Y, et al. LES of the flow and building wall pressures in the center of Tokyo[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2008, 96(10–11):1762-1773.
 [25] Gousseau P, Blocken B, Heijst G J F V. Quality assessment of Large-Eddy Simulation of wind flow around a high-rise building: Validation and solution verification[J]. Computers & Fluids, 2013, 79(6):120-133.
 [26] Kim Y, Castro I P, Xie Z T. Divergence-free turbulence inflow conditions for large-eddy simulations with incompressible flow solvers[J]. Computers & Fluids, 2013, 84(18):56-68.
 [27] Huang S H, Li Q S, Wu J R. A general inflow turbulence generator for large eddy simulation[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2010, 98(10):600-617.
 [28] Daniels S J, Castro I P, Xie Z T. Peak loading and surface pressure fluctuations of a tall model building[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2013, 120(5):19-28.
 [29] Yan B, Li Q. Large-eddy simulation of wind effects on a super-tall building in urban environment conditions[J]. Structure & Infrastructure Engineering, 2016, 12(6):765-785.
 [30] 乔磊, 谭峰, 杨庆山. 薄膜结构的动力反应分析[J]. 振动与冲击, 2011, 30(6):109-113.
Qiao L, Tan F, Yang Q S. Dynamic analysis of membrane structures[J]. Journal of Vibration and Shock, 2011, 30(6):109-113.
 [31] 周岱, 马骏, 李华峰等. 大跨柔性空间结构风压和耦合风效应分析[J]. 振动与冲击, 2009, 28(6):17-22.
Zhou D, Ma J, Li H F, et al. Analysis for the Wind Pressure and the Coupling Wind-induced Vibration Effects of Spatial Flexible Structure[J]. Journal of Vibration and Shock, 2009, 28(6):17-22.
 [32] 张强. 两方程湍流模型的应用研究[D]. 西北工业大学, 2004.
Zhang Q. Study on two equation turbulence model[D]. Northwestern Polytechnical University, 2004.
 [33] 苏铭德. 大涡模拟——研究湍流的一种新手段[J]. 力学进展, 1984, 14(4):60-71.
Su M D. Large eddy simulation—a new method to study turbulent flow[J]. Advances In Mechanics, 1984, 14(4):60-71.
 [34] Cebral J, Lohner R. Conservative Load Projection and Tracking for Fluid Structure Problems[J]. AIAA Journal, 1997, 35(4):687-692.
 [35] Yang Y, Gu M, Chen S, et al. New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2009, 97(2):88-95.
 [36] Blocken B, Stathopoulos T, Carmeliet J. CFD simulation of the atmospheric boundary layer: wall function problems[J]. Atmospheric Environment, 2007, 41(26):238-252.
 [37] ANSYS Inc. (US). ANSYS Mechanical APDL Basic Analysis Guide, Release 13 (2011)
 [38] Braun A L , Awruch A M . Aerodynamic and aeroelastic analyses on the CAARC standard tall building model using numerical simulation[J]. Computers & Structures, 2009, 87(9-10):564-581.
 [39] Goliger A M , Milford R V . Sensitivity of the CAARC standard building model to geometric scale and turbulence[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 31(1):105-123.
 [40] Melbourne W H . Comparison of measurements on the CAARC standard tall building model in simulated model wind flows[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1980, 6(1-2):73-88.

PDF(2516 KB)

1518

Accesses

0

Citation

Detail

段落导航
相关文章

/