基于耐震时程法强震下导管架平台动力响应分析

孙久洋1,吕涛1,2,陈国明1,孙树峰1,宋玉东1,英豪1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 232-241.

PDF(1895 KB)
PDF(1895 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 232-241.
论文

基于耐震时程法强震下导管架平台动力响应分析

  • 孙久洋1,吕涛1,2,陈国明1,孙树峰1,宋玉东1,英豪1
作者信息 +

Dynamic response analysis of a jacket platform under strong earthquake based on an endurance time method

  • SUN Jiuyang1,L Tao1,2,CHEN Guoming1,SUN Shufeng1,SONG Yudong1,YING Hao1
Author information +
文章历史 +

摘要

基于我国南海地域的国际标准化组织规范反应谱,改进非线性最小二乘优化算法,合成了4条时长为30s的耐震时程加速度曲线,并验证改进算法的精度与可靠性;建立平台弹塑性有限元模型,在考虑海水因素的条件下,分别基于增量动力法与耐震时程法对平台在强震下的动力响应进行对比分析,评价耐震时程法用于评估平台动力响应的适用性。结果表明:改进算法减小了迭代次数,较大程度地提高了曲线合成精度,与增量动力法相比,耐震时程法极大地减小了时程分析次数,可很好地预测平台结构的顶点位移、最大层间位移角以及基底剪力。由于耐震时程法计算效率高,计算精度较好,这为导管架平台地震动力响应分析提供了一种新的有效方法。

Abstract

Four endurance time acceleration curves (ETACs) with duration of 30 s were generated based on South China Sea design response spectra of the International Organization for Standardization (ISO) by using an improved nonlinear least-square method. In addition, the accuracy and reliability of the procedure were discussed. Under the condition of considering seawater, the dynamic response of the platform under strong earthquakes was contrasted and analyzed based on an incremental dynamic method and an endurance time method (ETM). And the rationality of ETM used to evaluate the platform dynamic response was evaluated. The results show that the improved method reduces the iterative times and greatly improves precision of curves. Compared with the incremental dynamic method, ETM greatly reduces the times of time-history analysis. For ETM, the top displacement, the maximum interstory drift ratio and the base shear of the platform structure can be well predicted. Since ETM has the characteristics of high efficiency in calculation, it provides a new and effective method for dynamic response analysis of jacket platforms.

关键词

耐震时程法 / Levenberg-Marquardt算法 / 导管架平台 / 增量动力分析 / 动力响应

Key words

endurance time method / Levenberg-Marquardt algorithm / jacket platform / incremental dynamic analysis / dynamic response

引用本文

导出引用
孙久洋1,吕涛1,2,陈国明1,孙树峰1,宋玉东1,英豪1. 基于耐震时程法强震下导管架平台动力响应分析[J]. 振动与冲击, 2020, 39(20): 232-241
SUN Jiuyang1,L Tao1,2,CHEN Guoming1,SUN Shufeng1,SONG Yudong1,YING Hao1. Dynamic response analysis of a jacket platform under strong earthquake based on an endurance time method[J]. Journal of Vibration and Shock, 2020, 39(20): 232-241

参考文献

[1] 谢礼立, 马玉宏. 现代抗震设计理论的发展过程[J]. 国际地震动态, 2003, 10: 1-8.
    XIE Li-li, MA Yu-hong. The development of modern seismic design theory[J]. Recent Developments in Word Seismology, 2003, 10:1-8
[2] 胡进军, 郝彦春, 谢礼立. 潜在地震对我国南海开发和建设影响的初步考虑[J]. 地震工程学报, 2014,36(03):616-621.
    HU Jin-jun, HAO Yan-chun, XIE Li-li. Effects of Potential Earthquakes on Construction and Development in South China Sea Region[J]. China Earthquake Engineering Journal, 2014,36(03):616-621.
[3] 中华人民共和国国家标准. 建筑抗震设计规范GB50011-2010[S]. 北京:中国建筑工业出版社,2010.
    PRC National Standard. Code for seismic design of buildings GB50011-2010[S]. Beijing:China Building Industry Press,2010.
[4] 汪梦甫, 汪帜辉, 刘飞飞. 增量动力弹塑性分析方法的改进及其应用[J]. 地震工程与工程振动, 2012, 32(01):30-35.
    WANG Meng-fu, WANG Zhi-hui, LIU Fei-fei. Improved method for incremental dynamic analysis and its application[J]. Journal of earthquake engineering and engineering vibration, 2012, 32(01):30-35.
[5] 郝润霞, 杨作续, 李钢 ,等. 基于拟力法的增量动力分析方法[J]. 振动与冲击, 2019, 38(04):175-183+190.
    HAO Run-xia, YANG Zuo-xu, LI Gang, et al. Incremental dynamic analysis method based on force analogy method[J]. Journal of Vibration and Shock, 2019, 38(04):175-183+190.
[6] VALAMANESH V, ESTEKANCHI H E, VAFAI A. characteristics of second generation endurance time acceleration functions[J]. Civil Engineering, 2010,  17(1):53-61.
[7] ESTEKANCHI H E, VALAMANESH V, VAFAI A. Application of endurance time method in linear seismic analysis[J]. Engineering Structures, 2007, 29(10):2551-2562.
[8] ESTEKANCHI H E, RIAHI H T, VAFAI A. Application of endurance time method in seismic assessment of steel frames[J]. Engineering Structures, 2011, 33(9):2535-2546.
[9] HARIRI-ARDEBILI M A, ZARRINGHALAM Y, ESTEKANCHI H E, et al. Nonlinear seismic assessment of steel moment frames using time–history, incremental dynamic, and endurance time analysis methods[J]. Scientia Iranica, 2013, 20(3):431-444.
[10] 白久林, 欧进萍. 基于耐震时程法的钢筋混凝土框架结构抗震性能评估[J]. 工程力学, 2016, 33(10):86-96.
    BAI Jiu-lin, OU Jin-ping. Seismic performance evaluation of reinforced concrete frame structures using the endurance time method[J]. Engineering Mechanics, 2016, 33(10):86-96.
[11] 沈禹. 基于耐震时程法的梁式桥地震碰撞分析[D]. 哈尔滨:哈尔滨工业大学, 2017.
    SHEN Yu. Seismic pounding analysis of girder bridge based on endurance time method[D].  Harbin: Harbin Institute of Technology, 2017.
[12] 杨乐. 钢框架结构地震失效模式与整体抗震能力分析[D]. 哈尔滨:哈尔滨工业大学, 2013.
    YANG Le. Analysis of earthquake failure mode and global seismic capacity for steel moment frame stuctures[D]. Harbin: Harbin Institute of Technology, 2017.
[13] HARIRI-ARDEBILI M A , SATTAR S , ESTEKANCHI H E . Performance-based seismic assessment of steel frames using endurance time analysis[J]. Engineering Structures, 2014, 69(15):216-234.
[14] TAJMIR RIAHI H , AMOUZEGAR H , FALSAFIOUN M . Seismic collapse assessment of reinforced concrete moment frames using endurance time analysis[J]. The Structural Design of Tall and Special Buildings, 2015, 24(4):300-315.
[15] BASIM M C , ESTEKANCHI H E . Application of endurance time method in performance-based optimum design of structures[J]. Structural Safety, 2015, 56:52-67.
[16] Guo A, Shen Y, Bai J, et al. Application of the endurance time method to the seismic analysis and evaluation of highway bridges considering pounding effects[J]. Engineering Structures, 2017, 131: 220-230.
[17] 陈苏, 周越, 李小军,等. 近海域地震动的时频特征与工程特性[J]. 振动与冲击, 2018, 37(16):227-233.
    CHEN su, ZHOU yue, LI Xiao-jun, et al. Time-frequency and engineering characteristics on offshore ground motion[J]. Journal of Vibration and Shock, 2018, 37(16):227-233.
[18] 应续华. 强震作用下导管架平台倒塌安全储备研究[D]. 大连:大连理工大学, 2015.
    YING Xu-hua. Collapse Safety Margin of Jacket Platform Subjected to Strong Earthquakes[D]. Dalian:Dalian University of Technology, 2015.
[19] ISO 19901-2:2017. Petroleum and natural gas industries, Specific requirements for offshore structures, Part 2:Seismic design procedures and criteria[S]. 2017.
[20] 马永.南海台西南盆地沉积物波特征及其成因机制研究[D].南京:南京大学, 2016.
    MA Yong. Sediment waves characteristics and their formation mechanism, the Southwest Taiwan Basin,South China Sea[D]. Nanjing:Nanjing University,2016.
[21] 刘红兵.导管架平台极端动力灾变机理及生存能力研究[D].青岛:中国石油大学(华东), 2016.
    LIU Hong-bing. Research on dynamic catastrophe mechanism and survivability for jacket platform[D]. Qingdao:China University of Petroleum(East China),2016.
[22] The PEER-NGA ground motion database. Pacific Earthquake Engineering Research Center(PEER) Center[DB]. https://ngawest2.berkeley.edu/site, 2018-9.
[23] Mohammad Ch. Basim, Homayoon E. Estekanchi. Application of endurance time method in performance-based optimum design of structures[J]. Structural Safety,2015,56.
[24] Huang Y N , Whittaker A S , Luco N , et al. Scaling Earthquake Ground Motions for Performance-Based Assessment of Buildings[J]. Journal of Structural Engineering, 2011, 137(3):311-321.
[25] 马永涛,高泽宇,高庚元,等.基于ETM的钢筋混凝土框架结构抗震分析[J]. 土木工程与管理学报, 2018,35(05):175-181.
    MA Yong-tao, GAO Ze-yu, GAO Geng-yuan, et al. ETM-Based Seismic analysis of reinforced concrete frame structure[J]. Journal of Civil Engineering and Management, 2018, 35(5):1-7.

PDF(1895 KB)

Accesses

Citation

Detail

段落导航
相关文章

/