基于改进CEEMDAN方法确定微差爆破实际延期时间

张亮1,2,凌同华1,陈增辉3,张胜2,余彬1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 274-280.

PDF(1328 KB)
PDF(1328 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 274-280.
论文

基于改进CEEMDAN方法确定微差爆破实际延期时间

  • 张亮1,2,凌同华1,陈增辉3,张胜2,余彬1
作者信息 +

Identification of the real delay time of millisecond blasting based on an improved CEEMDAN method

  • ZHANG Liang1,2, LING Tonghua1, CHEN Zenghui3,ZHANG Sheng2, YU Bin1
Author information +
文章历史 +

摘要

针对微差爆破实际延期间隔识别中容易出现的模态混叠和伪分量问题,提出了一种CEEMDAN算法结合排列熵和奇异值分解理论联合识别微差爆破延期时间的方法。以某微风化花岗岩场地实测爆破振动信号为例,首先分别采用EMD算法与CEEMDAN算法对仿真微差爆破信号和实测微差爆破信号实际延期间隔进行识别,其次在CEEMDAN算法识别的基础上,用排列熵定量检测保留爆破震动特征的有效IMF分量,对熵值大于0.5的IMF分量利用奇异值分解作处理,并采用Hilbert变换绘制相应IMF分量的包络谱。结果表明:CEEMDAN方法能识别微差爆破延期时间,且能有效克服模态混叠现象。经CEEMDAN法处理的数据依旧存在虚假分量的问题,通过排列熵检测和奇异值分解降噪处理有效地压制了噪声,使有效IMF分量的包络谱变得更光滑,从而进一步降低干扰,实现微差爆破延期时间的准确识别。

Abstract

In view of the problems of modal aliasing and pseudo-component which are easy to occur in the real delay interval identification of millisecond blasting, a method that combined the CEEMDAN algorithm with permutation entropy and singular value decomposition theory was proposed. Taking the measured blasting vibration signal of a slightly weathered granite site as an example, the EMD and the CEMDAN algorithms were applied in the identification of real delay interval in the simulated millisecond blasting signal and the measured millisecond blasting signal, respectively. Then on the basis of CEEMDAN algorithm recognition, the effective IMF component retaining the blasting feature was quantitatively detected by the permutation entropy, the IMF component with entropy greater than 0.5 was processed by singular value decomposition, and the envelope spectrum of the corresponding IMF component was drawn by the Hilbert transform. The results show that the CEEMDAN method can identify the real time of millisecond blasting and can effectively overcome the phenomenon of mode aliasing. The data processed by CEEMDAN still has the problem of false components, the entropy detection and singular value decomposition were used to suppress the noise and pseudo components, making the envelope spectrum of the effective IMF component smoother, thereby further reducing the interference and realizing accurate identification of the real delay time of millisecond blasting.

关键词

EMD / CEEMDAN / 排列熵 / 奇异值分解 / 微差延期间隔

Key words

EMD / CEEMDAN / permutation entropy / singular value decomposition / delayed time interval

引用本文

导出引用
张亮1,2,凌同华1,陈增辉3,张胜2,余彬1. 基于改进CEEMDAN方法确定微差爆破实际延期时间[J]. 振动与冲击, 2020, 39(20): 274-280
ZHANG Liang1,2, LING Tonghua1, CHEN Zenghui3,ZHANG Sheng2, YU Bin1. Identification of the real delay time of millisecond blasting based on an improved CEEMDAN method[J]. Journal of Vibration and Shock, 2020, 39(20): 274-280

参考文献

[1] 凌同华,李夕兵,戴塔根,等.基于小波变换的时-能密度法优选微差延期时间[J].重庆建筑大学学报,2006,28(02):36-39.
LING Tonghua, LI Xibing, DAI Dagen, et al. Optmiizing delay time interval by the means of time-energy analysis based on wavelet transform [J]. Journal of Chongqing Jianzhu University, 2006, 28(02): 36-39.
[2] 龚敏,邱燚可可,李永强,等.定制雷管微差时间实测与识别法在城市隧道爆破设计中的应用[J].岩石力学与工程学报,2015,34(06):1179-1187.
GONG Min, QIU Yikeke, LI Yongjiang, et al. Application of measuring and identifying detonation time of customized detonator in blasting design of urban tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(06): 1179-1187.
[3] 江航,尚春阳,高瑞鹏.基于EMD和神经网络的轮轨故障噪声诊断识别方法研究[J].振动与冲击,2014,33(17):34-38.
JIANG Hang, SHANG Chunyang, GAO Ruipeng. Wheel/rail fault noise diagnosis method based on EMD and neural network[J]. Journal of Vibration and Shock, 2014, 33(17): 34-38.
[4] 杨永锋,任兴民,秦卫阳,等.基于EMD方法的混沌时间序列预测[J].物理学报,2008(10):6139-6144.
YANG Yongfeng, REN Xingmin, QIN Weiyang, et al. Prediction of chaotic time series based on EMD method [J]. Acta Physica Sinica, 2008(10): 6139-6144.
[5] 钱守一,李启月.微差爆破实际延迟时间的HHT瞬时能量识别法[J].矿业研究与开发,2012,32(02):113-116.
QIAN Shouyi, LI Qiyue. HHT instantaneous energy method to identify of delay time in millisecond blasting[J]. Mining Research and Development, 2012,32(02):113-116.
[6] 冀楷欣. 露天开采爆破振动信号分析与边坡效应研究[D].太原理工大学,2016.
JI Kaixin. Analysis of blasting vibration signal and research on slope effect in open pit mining[D]. Taiyuan University of Technology, 2016.
[7] 张义平,李夕兵,赵国彦.爆破微差延时的EMD识别法[J].地下空间与工程学报,2006(03):488-490.
ZHANG Yiping, LI Xibing, ZHAO Guoyan. The method of using EMD to identify time of delay in millisecond blasting [J]. Chinese Journal of Underground Space and Engineering, 2006(03): 488-490.
[8] 刘连生,蒋家卫,周子荣,等.几种信号去噪方法在爆破振动信号中的应用分析[J].有色金属科学与工程,2016,7(03):107-112.
LIU Liansheng, JIANG Jiawei, ZHOU Zirong, et al. Application of de-noising methods to blasting vibration signals[J]. Nonferrous Metals Science and Engineering, 2016,7(03):107-112.
[9] 冯辅周,饶国强,司爱威,等.排列熵算法研究及其在振动信号突变检测中的应用[J].振动工程学报,2012,25(02):221-224.
FENG Fuzhou, RAO Guoqiang, SI Aiwei, et al. Research and application of the arithmetic of PE intesting the sudden change of vibration signal [J]. Journal of Vibration Engineering, 2012, 25(02): 221-224.
[10] 周涛涛,朱显明,彭伟才,等.基于CEEMD和排列熵的故障数据小波阈值降噪方法[J].振动与冲击,2015,34(23):207-211.
ZHOU Taotao, ZHU Xianming, PENG Weicai, et al. A wavelet threshold denoising method for fault data based on CEEMD and permutation entropy[J]. Journal of Vibration and Shock, 2015, 34(23): 207-211.
[11] 邓斌,蒋昌波,李志威,等.基于EEMD-HHT的近岸冲流带波浪非线性波动特征分析[J].振动与冲击,2018,37(21):68-77.
DENG Bin, JIANG Changbo, LI Zhiwei, et al. Characteristics analysis of wave hydrodynamics in coastal swash zone based on EEMD-HHT method[J]. Journal of Vibration and Shock, 2018,37(21):68-77.
[12] 艾文强,范锦彪,王燕.联合CEEMD和改进阈值去噪的初至波识别算法[J].兵器装备工程学报,2019,40(03):137-142.
AI Wenqiang, FAN Jinbiao, WANG Yan. Combined CEEMD and improved threshold denoising algorithm for first break recognition[J]. Journal of Ordnance Equipment Engineering, 2019,40(03):137-142.
[13] 孙灵芳,徐曼菲,朴亨,等.基于改进CEEMD的超声检测信号自适应降噪[J].振动与冲击,2017,36(20):225-232.
SUN Lingfang, XU Manfei, PIAO Heng, et al. Self-adaptive noise denoising for ultrasonic detection signal based on improved CEEMD[J]. Journal of Vibration and Shock, 2017,36(20):225-232.
[14] 别锋锋,徐鹏青,裴峻峰,等.基于CEEMDAN与奇异值分解的往复机械故障诊断方法研究[J].噪声与振动控制,2018,38(04):180-185+207.
BIE Fengfeng, XU Pengqing, PEI Junfeng, et al. AFault Diagnosis Method for Reciprocating Machinery based on CEEMDAN and Singular Value Decomposition[J]. Noise and Vibration Control, 2018, 38(04): 180-185+207.
[15] COLOMINAS M A, SCHLOTTHAUER G, TORRES M E. Improved complete ensemble EMD: A suitable tool for biomedical signal processing[J]. Biomedical Signal Processing and Control, 2014(14): 19-29.
[16] 冯辅周,饶国强,司爱威,等.排列熵算法的应用与发展[J].装甲兵工程学院学报,2012,26(02):34-38.
FENG Fuzhou, RAO Guoqiang, SI Aiwei, et al. Application and Development of Permutation Entropy Algorithm[J]. Journal of Academy of Armored Force Engineering, 2012, 26(02): 34-38.
[17] 饶国强,冯辅周,司爱威,谢金良.排列熵算法参数的优化确定方法研究[J].振动与冲击,2014,33(01):188-193.
RAO Guoqiang, FENG Fuzhou, SI Aiwei, et al. Method for optimal determination of parameters in permutation entropy algorithm[J]. Journal of Vibration and Shock, 2014, 33(01): 188-193.
[18] 赵洪山,郭双伟,高夺.基于奇异值分解和变分模态分解的轴承故障特征提取[J].振动与冲击,2016,35(22):183-188.
ZHAO Hongshan, GUO Shuangwei, GAO Duo. Fault feature extraction of bearing faults based on singular value decomposition and variational modal decomposition[J]. Journal of Vibration and Shock, 2016, 35(22): 183-188.
[19] Maravic I , Vetterli M . Sampling and reconstruction of signals with finite rate of innovation in the presence of noise[J]. IEEE Transactions on Signal Processing, 2005, 53(8):2788-2805.
[20] Otazu X, Ribó M, Peracaula M, et al. Detection of superimposed periodic signals using wavelets[J]. Monthly Notices of the Royal Astronomical Society, 2010, 333(2):365-372.
[21] 杨斌,张家玮,王建国,等.CEEMD和MCKD的滚动轴承早期故障特征提取[J].机械科学与技术,2018,37(12):1936-1943.
YANG Bin, ZHANG Jiawei, WANG Jianguo, et al. Early fault feature extraction of rolling bearings applying CEEMD-MCKD[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(12): 1936-1943.
[22] 张建伟,侯鸽,暴振磊,等.基于CEEMDAN与SVD的泄流结构振动信号降噪方法[J].振动与冲击,2017,36(22):138-143.
ZHANG Jianwei, HOU Ge, BAO Zhenlei, et al. A signal de-noising method for vibration signals from flood discharge structures based on CEEMDAN and SVD[J]. Journal of Vibration and Shock, 2017, 36(22): 138-143.

PDF(1328 KB)

433

Accesses

0

Citation

Detail

段落导航
相关文章

/