机械整流式振动能量回收器的研究

朱子恒,徐琳,邹俊逸,赖秋洋,纪然

振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 286-294.

PDF(1829 KB)
PDF(1829 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 286-294.
论文

机械整流式振动能量回收器的研究

  • 朱子恒,徐琳,邹俊逸,赖秋洋,纪然
作者信息 +

A study on a vibration energy harvester with mechanical rectification

  • ZHU Ziheng, XU Lin, ZOU Junyi, LAI Qiuyang, JI Ran
Author information +
文章历史 +

摘要

为了研究机械整流以及惯容对振动能量回收特性的影响,以回收背包振动能为研究方向,借鉴齿轮齿条以及滚珠丝杠的运动转化形式,设计两种形式的振动能量回收器。该系统结合单向轴承及惯容将背包的振动能转化为电能供电子设备使用。通过建立数学模型,基于能量转换原理,分析系统的能量回收特性。仿真分析机械整流以及惯容对振动能量回收特性的影响。最后通过试验探讨了惯容、频率以及负载电阻对系统能量回收特性的影响,并对比两种样机的振动能回收特性。结果表明:当系统激励频率接近固有频率时,系统的能量回收性能最佳;且可匹配合适的惯容以提高系统的输出功率;相比于滚珠丝杠式样机,在同等工况下齿轮齿条式的回收效率更高。

Abstract

In order to study the influence of mechanical rectification and inertial on vibration energy recovery characteristics, based on the harvest vibration energy of backpack as background, two kinds of vibration energy harvester were designed by referring to the motion transformation forms of rack and pinion and ball screw. The vibration energy harvester combines a one-way clutch and inertia to convert the vibration energy from the backpack into electrical energy for use by the electronic device. By establishing a system mathematical model, the energy harvesting characteristics of the system were analyzed from the perspective of energy conversion, and the effects of mechanical rectification and inertial on vibration harvesting characteristics were simulated and analyzed. Finally, the effects of mass ratio, frequency and load resistance on the energy harvesting characteristics of the system were analyzed through experiments, and the energy harvesting characteristics of the two prototypes were compared. The test results show that the system has the best energy harvesting performance when the system excitation frequency is close to the natural frequency of the system. At the same time, the energy harvesting efficiency can be improved by matching a suitable inertia. Moreover, compared with the ball screw type prototype, the harvesting efficiency of the rack and pinion prototype is higher under the same system parameters.

关键词

振动能 / 齿轮齿条 / 滚珠丝杠 / 机械整流 / 惯容 / 单向轴承

Key words

vibration energy / rack and pinion / ball Screw / mechanical rectification / inertia / one-way clutch

引用本文

导出引用
朱子恒,徐琳,邹俊逸,赖秋洋,纪然. 机械整流式振动能量回收器的研究[J]. 振动与冲击, 2020, 39(20): 286-294
ZHU Ziheng, XU Lin, ZOU Junyi, LAI Qiuyang, JI Ran. A study on a vibration energy harvester with mechanical rectification[J]. Journal of Vibration and Shock, 2020, 39(20): 286-294

参考文献

[1]徐琳. 汽车液电馈能式减振器研究[D]. 武汉理工大学,2011.        
XU Lin. Study on Hydraulic Transmission Energy-regenerative Shock Absorber of Automobile [D]. Wuhan University of Technology, 2011.
[2] 喻凡,张勇超.馈能型车辆主动悬架技术 [J].农业机械学报,2010,41(1):1-6.
YU Fan, ZHANG Yongchao. Technology of Regenerative Vehicle Active Suspensions [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(1): 1-6.
[3] 张勇超,喻凡,顾永辉,等. 汽车电动悬架的减振与馈能特性试验验证[J]. 上海交通大学学报,2008(06): 874-877.
ZHANG Yongchao, YU Fan, GU Yonghui, et al. Isolation and Energy-regenerative Performance Experimental Verificat ion of Automotive Electrical Suspension [J]. Journal of Shanghai Jiaotong University, 2008(06): 874-877.
[4] 张勇超,郑雪春,喻凡,等. 馈能式电动悬架的原理与试验研究[J]. 汽车工程,2008(01): 48-52.
ZHANG Yongchao, Zheng Xuemei, YU Fan, et al. Theoretical and Experimental Study on Electrical Energy-Regenerative Suspension [J]. Automotive Engineering, 2008(01): 48-52.
[5] 刘松山,王庆年,王伟华,等. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版),2013, 43(03): 557-563.
LIU Songshan, Wang Qingnian, Wang Weihua, et al. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension [J]. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(03): 557-563.
[6] 王庆年,刘松山,王伟华,等. 滚珠丝杠式馈能型减振器的结构设计及参数匹配[J]. 吉林大学学报(工学版),2012,42(05): 1100-1106.
WANG Qingnian, Liu Songshan, Wang Weihua, et al. Structure design and parameter matching of ball-screw regenerative damper [J]. Journal of Jilin University(Engineering and Technology Edition), 2012, 42(05): 1100-1106.
[7] Longhan Xie, Xiaodong Li, Siqi Cai, et al. Increased energy harvesting from backpack to serve as self-sustainable power source via a tube-like harvester [J]. Mechanical Systems and Signal Processing 96 (2017) 215–225.
[8] 吴义鹏,季宏丽,裘进浩,张浩.共振频率可调式非线性压电振动能量收集器[J].振动与冲击, 2017, 36(05): 12-16+22.
WU Yipeng,JI Hongli,QIU Jinhao,et al. A nonlinear piezoelectric vibration energy harvesting device with tunable resonance frequencies[J].Jouranl of vibration and shock, 2017,36(05): 12-16+22.
[9] 汪志昊,寇琛,许艳伟,郜辉. 自供电MR阻尼器复合减振系统对斜拉索振动控制试验研究[J]. 振动与冲击, 2019, 38(10):1-5+14.
WANG Zhihao,KOU Chen,XU Yanwei,et al. Experimental study on the cable vibration controlusing a self-powered MR damper hybrid system[J].Jouranl of vibration and shock, 2019, 38(10): 1-5+14.
[10] L.Rome, L.Flynn, E.M. Goldman, et al. Generating electricity while walking with loads, Science 309 (2005) 1725–1728.
[11] G. Wang, C. Luo, H. Hofmann,et al.“Power electronic circuitry for energy harvesting backpack”, in Proceedings of the 2009 Energy Conversion Congress and Exposition, Sept. 20–24, San Jose, CA, pp. 3544–3549.
[12] Z. Li, L. Zuo, J. Kuang, et al. “Energy-harvesting shock absorber with a mechanical motion rectifier”, Smart Materials and Structures 22 (2), 2012.
[13] Mingyi Liu, Wei-Che Tai, et al.“Toward  Broadband Vibration Energy Harvesting via Mechanical Motion Rectification induced Inertia-Nonlinearity”, Smart Materials and Structures 27(7) • May 2018.
[14] W. C. Tai and L. Zuo, “On optimization of energy harvesting from base-excited vibration,” J. Sound Vib., vol.411, pp. 47–59, 2017.
[15] W.-C.Tai, M.Liu, Y.Yuan, et al. “On improvement of operation bandwidth of duffing-like vibration based harvesters using a mechanical motion rectifier,” in Proceedings of the ASME Design Engineering Technical Conference, vol. 8, 2017.
[16] Y.Yuan, M. Liu, W.-C. Tai, et al. “Design and experimental studies of an energy harvesting backpack with mechanical motion rectification,” Proc. SPIE, vol. 10168, p. 1016825, 2017.
[17] Yang Z, Khaligh A. A flat linear generator with axial magnetized permanent magnets with reduced accelerative force for backpack energy harvesting [C] Applied Power Electronics Conference & Exposition. IEEE, 2012.
[18] J. Elmes, V. Gaydarzhiev, A. Mensah, et al. “Maximum energy harvesting control for oscillating energy harvesting systems,” in Proc. IEEE Power Electron. Spec. Conf., 2007, pp.2792-2798.
[19] 黄时中,谢丽莎. 弹簧振子稳态受迫振动中的功能关系[J]. 大学物理,2014,33(09): 15-19.
HUANG Shizhong, Xie Lisha. Relation between the work and energy in stable forced vibration of a spring [J]. College Physics, 2014, 33(09): 15-19.

PDF(1829 KB)

Accesses

Citation

Detail

段落导航
相关文章

/