基于非局部理论的粘弹性基体上压电纳米板热-机电振动特性研究

张大鹏1,雷勇军1,段静波2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 32-41.

PDF(1244 KB)
PDF(1244 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 32-41.
论文

基于非局部理论的粘弹性基体上压电纳米板热-机电振动特性研究

  • 张大鹏1,雷勇军1,段静波2
作者信息 +

Thermo-electro-mechanical vibration responses of piezoelectric nanoplates embedded in viscoelastic medium via nonlocal elasticity theory

  • ZHANG Dapeng1,LEI Yongjun1,DUAN Jingbo2
Author information +
文章历史 +

摘要

基于非局部弹性理论研究粘弹性基体上压电纳米板的热-机电振动特性。综合考虑非局部效应、压电效应以及温度场、电场等因素影响,根据Kirchhoff板理论和Hamilton原理建立粘弹性基体上压电纳米板的热-机电振动特性分析模型,然后利用Galerkin条形传递函数方法进行求解,得到一般边界条件下压电纳米板固有频率的半解析解。通过与文献结果进行对比,验证所建分析模型与求解方法的有效性,并在此基础上系统分析非局部效应、边界条件、外电压、温度变化梯度等对压电纳米板振动特性的影响规律。结果表明,本文所建立的分析模型及其求解方法在分析粘弹性基体上压电纳米板的热-机电振动特性问题中准确有效。

Abstract

Thermo-electro-mechanical vibration of piezoelectric nanoplates embedded in viscoelastic medium was investigated via nonlocal elasticity theory. Considering nonlocal effect, piezoelectric effect, viscoelasticity of surrounding medium and thermo-electro-mechanical loadings simultaneously, governing equations of piezoelectric nanoplates were derived, and the natural frequencies were obtained by introducing the Galerkin strip distributed transfer function method. The developed model was validated by comparing the obtained results with those available in literature. The influences of nonlocal parameter, boundary conditions, external electric voltage and increment temperature were also examined in detail. The results demonstrate the efficiency of the developed model for thermo-electro-mechanical vibration analysis of piezoelectric nanoplates embedded in viscoelastic medium.

关键词

压电纳米板 / 粘弹性基体 / 振动特性 / 非局部弹性理论 / 传递函数方法

Key words

piezoelectric nanoplates / viscoelastic medium / vibration characteristics / nonlocal elasticity theory / transfer function method

引用本文

导出引用
张大鹏1,雷勇军1,段静波2. 基于非局部理论的粘弹性基体上压电纳米板热-机电振动特性研究[J]. 振动与冲击, 2020, 39(20): 32-41
ZHANG Dapeng1,LEI Yongjun1,DUAN Jingbo2. Thermo-electro-mechanical vibration responses of piezoelectric nanoplates embedded in viscoelastic medium via nonlocal elasticity theory[J]. Journal of Vibration and Shock, 2020, 39(20): 32-41

参考文献

[1] 寇文彬. 功能梯度压电纳米梁的线性振动与屈曲分析 [D]. 北京: 北京交通大学, 2014.
  Kou Wenbin. Linear vibration and buckling analysis of functionally graded piezoelectric nanobeams[D]. Beijing: Beijing Jiaotong University, 2014.
[2] S Stassi, V Cauda, C Ottone, 等. Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane [J]. Nano Energy, 2015, 13(36): 474-481.
[3] 王建艳. 压电材料的制备与压电微纳器件的研究 [D]. 厦门: 厦门大学, 2015.
  Wang Jianyan. Preparation of piezoelectric material and study of piezoelectric micro-nano-devices[D]. Xiamen: Xiamen Unibersity, 2015.
[4] 张敏亮. ZnO压电薄膜压力传感器的研究 [D]. 北京: 北方工业大学, 2012.
  Zhang Minliang. Study on ZnO piezoelectric film pressure sensor[D]. Beijing: North China University of Technology, 2012.
[5] P Fei, P H Yeh, J Zhou, 等. Piezoelectric potential gated field-effect transistor based on a free-standing ZnO wire [J]. Nano Letters, 2009, 9(10): 3435-3439.
[6] Zhong Lin Wang. ZnO nanowire and nanobelt platform for nanotechnology [J]. Materials Science and Engineering: R, 2009, 64: 33-71.
[7] Bo Liu, Qing Jiang, Yuantai Hu, 等. High-frequency vibrations of piezoelectric plates driven by lateral electric fields [J]. International Journal of Engineering Science, 2011, 49: 1435-1442.
[8] B Behjat,M. R. Khoshravan. Geometrically nonlinear static and free vibration analysis of functionally graded piezoelectric plates [J]. Composite Structures, 2012, 94: 874-882.
[9] A.C. Eringen. On differential equations of nonlocal elasticity and solution of screw dislocation and surface waves [J]. Journal of Applied Physics, 1983, 54(9): 4703-4710.
[10] A.C. Eringen. Nonlocal continuum field theories [M]. New York: Springer-Verlag, 2002.
[11] 刘灿昌, 裘进浩, 季宏丽, 等. 考虑非局部效应的纳米梁非线性振动 [J]. 振动与冲击, 2013, 32(4): 158-162.
Liu Cancang, Qiu Jinhao, Ji Hongli, et al. Non-local effect on non-linear vibration characteristics of a nano-beam[J]. Journal of Vibration and Shock, 2013, 32(4): 158-162.
[12] 余阳,杨洋. 基于非局部应变梯度欧拉梁模型的充流单壁碳纳米管波动分析 [J]. 振动与冲击, 2017, 36(8): 1-8.
Yu Yang, Yang Yang. Wave propagation of fluid-filled single-walled carbon nanotubes based on the nonlocal-strain gradient theory[J]. Journal of Vibration and Shock, 2017, 36(8): 1-8.
[13] 黄伟国, 李成,朱忠奎. 基于非局部理论的压杆稳定性及轴向振动研究 [J]. 振动与冲击, 2013, 32(5): 154-162.
Huang Weiguo, Li Cheng, Zhu Zhongkui. On the stability and axial vibration of compressive bars based on nonlocal elasticity theory[J]. Journal of Vibration and Shock, 2013, 32(5): 154-162.
[14] S H Hashemi, H Kalbasi,H R D Taher. Free vibration analysis of piezoelectric coupled annular plates with variable thickness [J]. Applied Mathematical Modelling, 2011, 35: 3527-3540.
[15] H B Li,X Wang. Nonlinear dynamic characteristics of graphene/piezoelectric laminated films in sensing moving loads [J]. Sensors and Actuators A: Physical, 2016, 238: 80-94.
[16] H B Li,X Wang. Nonlinear frequency shift behavior of graphene-elastic-piezoelectric laminated films as a nano-mass detector [J]. International Journal of Solids and Structures, 2016, 84: 17-26.
[17] 刘金建, 谢锋, 姚林泉, 等. 基于非局部理论的轴向运动黏弹性纳米板的参数振动及其稳定性 [J]. 振动与冲击, 2017, 36(19): 13-20.
Liu Jinjian, Xie Feng, Yao Linquan, et al. Parametric vibration and stability of an axially moving viscoelastic nanoplate based on the nonlocal theory[J]. Journal of Vibration and Shock, 2017, 36(19): 13-20.
[18] S.R. Asemi, A. Farajpour, H.R. Asemi, 等. Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM [J]. Physica E, 2014, 63: 169-179.
[19] Saeid Reza Asemi,Ali Farajpour. Thermo-electro-mechanical vibration of coupled piezoelectricnanoplate systems under non-uniform voltage distribution embedded in Pasternak elastic medium [J]. Current Applied Physics, 2014, 14: 814-832.
[20] Chen Liu, Liao Liang Ke, Yue Sheng Wang, 等. Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory [J]. Composite Structures, 2013, 106: 167-174.
[21] Liao Liang Ke, Chen Liu,Yue Sheng Wang. Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions [J]. Physica E, 2015, 66: 93-106.
[22] ZG Zhou,B Wang. The scattering of harmonic elastic anti-plane shear waves by a Griffith crack in a piezoelectric material plane by using the non-local throry [J]. International Jouranl of Engineering Science, 2002, 40: 303-317.
[23] ZG Zhou, LZ Wu,SY Du. Non-local theory solution for a Mode I crack in piezoelectric materials [J]. European Journal of Mechanics A/Solids, 2006, 25: 793-807.
[24] S T Quek,Q Wang. On dispersion relations in piezoelectric coupled-plate structures [J]. Smart Materals and Structures, 2000, 9: 859-867.
[25] Q Wang. On buckling of column structures with a pair of piezoelectirc layers [J]. Engineering Structures, 2002, 24: 199-205.
[26] A. Ghorbanpour Arani, A. Shiravand, M. Rahi, 等. Nonlocal vibration of coupled DLGS systems embedded on Visco-Pasternak foundation [J]. Physica B, 2012, 407: 4123-4131.

PDF(1244 KB)

1667

Accesses

0

Citation

Detail

段落导航
相关文章

/