含绞制梁结构的非线性隔振系统建模与仿真

牛牧青,陈立群

振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 42-46.

PDF(1090 KB)
PDF(1090 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 42-46.
论文

含绞制梁结构的非线性隔振系统建模与仿真

  • 牛牧青,陈立群
作者信息 +

Modelling and simulation of a wire rope based nonlinear vibration isolation system

  • NIU Muqing,CHEN Liqun
Author information +
文章历史 +

摘要

含绞制梁结构的隔振系统是一种典型的非线性被动隔振系统,依靠绞制梁弹性变形和内部摩擦进行能量转移与耗散。基于两端约束绞制梁结构,构造具有高阶刚度和滞回阻尼的非线性隔振系统,采用Bouc-Wen模型描述滞回恢复力,建立系统在简谐位移激励下的动力学模型。推导隔振系统的等效刚度和等效阻尼比计算公式,等效刚度包含线性项、立方项和幂函数项,呈现渐软-渐硬特性,等效阻尼比随幅值增大而先增大后减小。数值仿真采用基于谐波平衡法的近似解析方法和基于龙格库塔法的数值方法,揭示了立方刚度对系统的固有频率偏移特性的影响,在一定激励幅值范围内立方刚度可以消除滞回引起的跳跃现象,也揭示了模型参数对系统刚度和阻尼的影响规律。

Abstract

A wire rope based vibration isolation system is a typical nonlinear passive vibration isolation system. Energy is transferred and dissipated through elastic deformation and inner friction. Based on a wire rope structure with both ends constrained, a nonlinear vibration isolation system with high-order stiffness and hysteretic damping was constructed. The Bouc-Wen model was adopted to characterize the hysteretic restoring force and a dynamic model was established for the system under harmonic displacement excitation. Expressions for equivalent stiffness and equivalent damping ratio were deducted. The equivalent stiffness includes linear, cubic and power function terms, and the system exhibits a softening-hardening characteristics. The equivalent damping ratio increases first and then decreases with vibration amplitude. The harmonic balance method based approximate analytical solution and the 4th-order Runge-Kutta method based numerical solution were adopted in numerical simulation. The results demonstrate that cubic stiffness has an effect on the resonant frequency varying characteristics and can eliminate the jump phenomena in a specific excitation amplitude range. The simulation results also reveal the influences of model parameters on system stiffness and damping.

关键词

非线性隔振 / 绞制梁 / Bouc-Wen模型 / 数值仿真 / 滞回

Key words

nonlinear vibration isolation / wire rope / Bouc-Wen model / numerical simulation / hysteresis

引用本文

导出引用
牛牧青,陈立群. 含绞制梁结构的非线性隔振系统建模与仿真[J]. 振动与冲击, 2020, 39(20): 42-46
NIU Muqing,CHEN Liqun. Modelling and simulation of a wire rope based nonlinear vibration isolation system[J]. Journal of Vibration and Shock, 2020, 39(20): 42-46

参考文献

[1] 徐鉴. 振动控制研究综述[J]. 力学季刊, 2015, 36(4):547-565.
XU Jian. Advances of Research on Vibration Control [J]. Chinese Quarterly of Mechanics, 2015, 36(4):547-565.
[2] 陆泽琦, 陈立群. 非线性被动隔振的若干进展[J]. 力学学报, 2017, 49(3):550-564.
LU Ze-qi, CHEN Li-qun. Some recent pogresses in nonlinear passive isolations of vibrations [J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3):550-564.
[3]  Pagano S, Strano S. Wire rope springs for passive vibration control of a light steel structure [J]. WSEAS Transactions on Applied and Theoretical Mechanics, 2013, 8(3): 212-221.
[4]  Demetriades G, Constantinou M, Reinhorn A. Study of wire rope systems for seismic protection of equipment in buildings [R]. Technical Report NCEER-92-0012, 1992.
[5]  Carpineto N, Lacarbonara W, Vestroni F. Hysteretic tuned mass dampers for structural vibration mitigation [J]. Journal of Sound and Vibration, 2014, 333(5):1302-1318.
[6] Carboni B, Lacarbonara W, Auricchio F. Hysteresis of multiconfiguration assemblies of Nitinol and steel strands: experiments and phenomenological identification [J]. Journal of Engineering Mechanics, 2015, 141(3): 04014135.
[7] 赵倩, 刘子良, 姚红良, 等. IHB法在多自由度Bouc-Wen滞回非线性系统响应特性研究中的应用[J]. 振动与冲击, 2018, 37(10): 57-62.
ZHAO Qian, LIU Zi-liang, YAO Hong-liang, et al. Application of the IHB method to study the response characteristics of multi-DOF systems with Bouc-Wen hysteretic nonlinearity [J]. Journal of Vibration and Shock, 2018, 37(10): 57-62.
[8] YANG Shao-pu, SHEN Yong-jun. Recent advances in dynamics and control of hysteretic nonlinear systems [J]. Chaos, Solitons and Fractals, 2009, 40:1808-1822.
[9]  LI Hong-guang, MENG Guang. Nonlinear dynamics of a SDOF oscillator with Bouc-Wen hysteresis [J]. Chaos, Solitons and Fractals, 2007, 34:337-343.
[10] 吴荣平, 白鸿柏, 路纯红. 柔性基础上迟滞干摩擦隔振系统的简化分析. 机械强度, 2019, 41(1):44-48.
WU Rong-ping, BAI Hong-bai, LU Chun-hong. Simplified analysis of hysteresis dry friction vibration isolation system oon flexible foundation [J]. Journal of Mechanical Strength, 2019, 41(1):44-48.
[11] XIONG Huai, KONG Xian-ren, LI Hai-qin, et al. Vibration analysis of nonlinear systems with the bilinear hysteretic oscillator by using incremental harmonic balance method [J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 42:437-450.
[12] Casalotti A, Lacarbonara W. Tailoring of pinched hysteresis for nonlinear vibration absorption via asymptotic analysis [J]. International Journal of Non-Linear Mechanics, 2017, 94:59-71.
[13] Wong C, Ni Y, Lau S. Steady-state oscillation of hysteretic differential model. I: response analysis [J]. Journal of Engineering Mechanics, 1994, 120(11): 2271-2298.

PDF(1090 KB)

1185

Accesses

0

Citation

Detail

段落导航
相关文章

/