基于多通道一维卷积神经网络特征学习的齿轮箱故障诊断方法

叶壮,余建波

振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 55-66.

PDF(3538 KB)
PDF(3538 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (20) : 55-66.
论文

基于多通道一维卷积神经网络特征学习的齿轮箱故障诊断方法

  • 叶壮,余建波
作者信息 +

Gearbox fault diagnosis based on feature learning of multi-channel one-dimensional convolutional neural network

  • YE Zhuang,YU Jianbo
Author information +
文章历史 +

摘要

为了解决单通道图像信号输入不能全面表达故障特征的问题,提出基于多通道一维卷积神经网络(Multi-channel One-dimensional Convolutional Neural Network,MC-1DCNN)的故障特征学习方法。首先,利用经验模态分解(Empirical Mode Decomposition, EMD)方法对信号进行处理,得到多通道一维信号;其次,构建MC-1DCNN模型,对多通道一维信号进行特征提取。最后,在MC-1DCNN的全连接层后接堆叠降噪自编码器(Stacked Denoised Autoencoder, SDAE)层,进一步进行维度缩减和特征提取并实现特征分类。通过某型号齿轮箱故障诊断实验对所提方法进行验证,实验结果表明,所提方法的特征提取能力和故障诊断效果显著优于典型的深度学习方法和机器学习分类器。

Abstract

A new DNN model, called multi-channel one-dimensional convolutional neural network (MC-1DCNN) was proposed in order to solve the problem of using single-channel signal images as input, which can not express the fault characteristics hidden in the vibration signals effectively. Firstly, empirical mode decomposition (EMD) was used to obtain the multi-channel one-dimensional signals. Secondly, MC-1DCNN was constructed to perform the feature extraction of the multi-channel one-dimensional signals. Finally, stacked denoised autoencoder (SDAE) was embedded after the fully connected layer for further feature extraction and classification. The effectiveness of the proposed method was verified on the gearbox test rig. The experimental results show that the proposed method has better performance on feature extraction and fault diagnosis than typical DNNs and other regular classifiers.

关键词

齿轮箱故障诊断 / 多通道信号 / 卷积神经网络 / 堆叠降噪自编码器 / 特征学习

Key words

gearbox fault diagnosis / multi-channel signal / convolutional neural network / stacked denoised autoencoder / feature learning

引用本文

导出引用
叶壮,余建波. 基于多通道一维卷积神经网络特征学习的齿轮箱故障诊断方法[J]. 振动与冲击, 2020, 39(20): 55-66
YE Zhuang,YU Jianbo. Gearbox fault diagnosis based on feature learning of multi-channel one-dimensional convolutional neural network[J]. Journal of Vibration and Shock, 2020, 39(20): 55-66

参考文献


[1] JIAO J, ZHAO M, LIN J, et al. A multivariate encoder information based convolutional neural network for intelligent fault diagnosis of planetary gearboxes[J]. Knowledge-Based Systems, 2018, 160: 237-250.
[2] SUN R, YANG Z, CHEN X, et al. Gear fault diagnosis based on the structured sparsity time-frequency analysis[J]. Mechanical Systems and Signal Processing, 2018, 102: 346-363.
[3] 李恒, 张氢, 秦仙蓉, 等. 基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J]. 振动与冲击, 2018, 37(19): 124-131.
LI Heng, ZHANG Qing, QIN Xianrong, et al. Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network [J].  Journal of Vibration and Shock, 2018, 37(19): 124-131.
[4] LIU H, ZHANG J, CHENG Y, et al. Fault diagnosis of gearbox using empirical mode decomposition and multi-fractal detrended cross-correlation analysis[J]. Journal of Sound and Vibration, 2016, 385: 350-371.
[5] VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11(Dec): 3371-3408.
[6] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet Classification with Deep Convolutional Neural Networks[J]. Advances in neural information processing systems, 2012, 25(2): 1-9.
[7] ZHAO D, WANG T and CHU F. Deep convolutional neural network based planet bearing fault classification[J]. Computers in industry, 2019, 107: 59-66.
[8] YU J. A selective deep stacked denoising autoencoders ensemble with negative correlation learning for gearbox fault diagnosis[J]. Computers in Industry, 2019, 108: 62-72.
[9] PENG B, XIA H, LIU X, et al, Research on intelligent fault diagnosis method for nuclear power plant based on correlation analysis and deep belief network[J], Progress in Nuclear Energy, 2018, 108: 419-427.
[10] 陈保家, 刘浩涛, 徐超, 等. 深度置信网络在齿轮故障诊断中的应用[J]. 中国机械工程, 2019, 30(2): 205-211.
CHEN Baojia, LIU Haotao, XU Chao, et al. Gear fault diagnosis based on DBNS[J]. China Mechanical Engineering, 2019, 30(2): 205-211.
[11] 吴春志, 江鹏程, 冯辅周, 等. 基于一维卷积神经网络的齿轮箱故障诊断[J]. 振动与冲击, 2018, 37(22): 56-61.
WU Chunzhi, JIANG Pengcheng, FENG Fuzhou, et al. Faults diagnosis method for gearboxes based on a 1-D convolutional neural network[J]. Journal of Vibration and Shock, 2018, 37(22): 56-61.
[12] CHEN R, HUANG X, YANG L, et al. Intelligent fault diagnosis method of planetary gearboxes based on convolution neural network and discrete wavelet transform [J]. Computers in Industry, 2019, 106: 48-59.
[13] JING L, ZHAO M, and LI P, A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox[J]. Measurement, 2017, 111: 1-10.
[14] 周奇才, 刘星辰, 赵炯, 等. 旋转机械一维深度卷积神经网络故障诊断研究[J]. 振动与冲击, 2018, 37(23): 31-37.
Zhou Qicai, Liu Xingchen, Zhao Wei, et al. Fault Diagnosis for Rotating Machinery on 1D depth convolutional neural networks [J]. Journal of Vibration and Shock, 2018, 37(23): 31-37.
[15] WU C, JIANG P, DING C, et al. Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network[J]. Computers in Industry, 2019(108): 53-61.
[16] FANG L, ZHANG H, ZHOU J, et al. Image classification with an RGB-channel nonsubsampled contourlet transform and a convolutional neural network[J]. Neurocomputing, https://doi.org/10.1016/j.neucom.2018.10.094
[17] 聂永红, 程军圣, 杨宇, 等. 基于经验模态分解的多通道有源噪声控制[J]. 振动与冲击, 2013, 32(20):189-195.
NIE Yonghong, CHENG Junsheng, YANG Yu, et al.  A multichannel active noise control system based on empirical mode decomposition[J]. Journal of Vibration and Shock, 2013, 32(20): 189-195.
[18] TRAORE B B, Bernard K F and Tangara F, Deep convolution neural network for image recognition[J]. Ecological Informatics, 2018(48): 257-268.
[19] 卢宏涛. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理, 2016, 31: 1-17.
LU Hongtao. Application of deep convolutional neural networks in computer vision[J]. Data Acquisition and Processing, 2016, 31: 1-17.
[20] 姜亚东. 卷积神经网络的研究与应用[D]. 四川: 电子科技大学, 2018.
JIANG Yadong. Research and application of convolutional neural networks [D]. Sichuan: University of Electronic Science and Technology of China, 2018.
[21] 李彦冬, 郝宗波, 雷航. 卷积神经网络研究综述[J].计算机应用, 2016, 36(09): 2508-2515, 2565.
Li Yandong, Hao Zongbo, Lei Hang. Survey of convolutional neural networks[J]. Journal of Computer Applications, 2016, 36(09): 2508-2515+2565.
[22] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[23] LU C, WANG Z, QIN W, et al. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification[J]. Signal Processing, 2017, 130: 377-388.
[24] MAATEN L V D,HINTON G. Visualizing Data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605.

PDF(3538 KB)

Accesses

Citation

Detail

段落导航
相关文章

/