针对复杂工况下的滚动轴承振动信号,提出一种基于广义回归神经网络-柔性最大值分类模型的故障诊断分类方法,实现故障模式的识别。对滚动轴承振动信号进行变分模态分解,特征提取等预处理得到特征数据集,并将其划分为训练集,验证集和测试集;使用训练集和验证集训练广义回归神经网络-柔性最大值分类模型,同时引入灰狼优化算法优选该模型的关键参数平滑因子得到理想的分类模型;将训练好的模型应用测试集,输出故障识别结果;通过模拟试验采集不同工况下的轴承故障数据,进行方法有效性验证。结果表明该方法能在小样本训练集下实现对不同工况下的轴承故障的有效诊断,是一种适用于实际工况的故障诊断方法。
Abstract
Aiming at rolling bearing vibration signals under complex working conditions, a bearing fault diagnosis classification method based on the generalized regression neural network-SOFTMAX (GRNN-SOFTMAX) classification model were proposed to realize bearing fault mode identification.Firstly, the variational mode decomposition (VMD) was performed for rolling bearing vibration signals to do feature extraction and other pre-processing, and obtain a feature data set.The feature data set was divided into a training one, a verification one and a test one.Then, the training set and test set were used to train the GRNN-SOFTMAX classification model.The grey wolf optimizer (GWO) was introduced to optimize the key parameter’s smoothing factor of the above model, and obtain an ideal classification model.Finally, the trained model was applied in the test set to output the fault identification results.Through simulation tests, bearing fault data under different working conditions was collected to verify the effectiveness of the proposed method.Results showed that the proposed method can use a small sample training set to realize effective diagnosis of bearing faults under different working conditions; it is a fault diagnosis method suitable for actual working conditions.
关键词
故障诊断 /
滚动轴承 /
广义回归神经网络(GRNN) /
柔性最大值归一化 /
灰狼优化(GWO)
{{custom_keyword}} /
Key words
fault diagnosis /
rolling bearing /
general regression neural network (GRNN) /
SOFTMAX normalization /
grey wolf optimizer (GWO)
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 余路,曲建岭,高峰,等. 基于改进稀疏编码的微弱振动信号特征提取算法[J].仪器仪表学报,2017, 38( 3) :711-717.
YU Lu, QU Jian Ling, GAO Feng, et al. Feature extraction of weak vibration signal based on improved sparse coding[J]. Chinese Journal of Scientific Instrument, 2017, 38(3): 711-717.
[2] ALI J B, FNAIECH N, SAIDI L, et al. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals[J]. Applied Acoustics, 2015, 89: 16-27.
[3] 姚亚夫,张星. 基于瞬时能量熵和SVM的滚动轴承故障诊断[J]. 电子测量与仪器学报,2013,27(10):957-962.
YAO Ya Fu, ZHANG Xing. Fault Diagnosis of Rolling Bearing Based on Instantaneous Energy Entropy and SVM[J]. Journal of Electronic Measurement and Instrument, 2013, 27(10): 957-962.
[4] ZHANG X Y, LIANG Y T, ZHOU J Z, et al. A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM[J]. Measurement,2015, (69): 164-179.
[5] FU W L, TAN J W, XU Y H, et al. Fault Diagnosis for Rolling Bearings Based on Fine-Sorted Dispersion Entropy and SVM Optimized with Mutation SCA-PSO[J]. Entropy, 2019, 21(4), 404.
[6] TAMILSELVAN P, WANG P . Failure diagnosis using deep belief learning based health state classification[J]. Reliability Engineering & System Safety, 2013, 115:124-135.
[7] LU C, WANG Z, ZHOU B. Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification[J]. Advanced Engineering Informatics, 2017, 32: 139-151.
[8] SADOUGHI M, HU C. Physics-Based Convolutional Neural Network for Fault Diagnosis of Rolling Element Bearings[J]. IEEE Sensors Journal, 2019,19(11): 4181-4192.
[9] 李恒,张氢,秦仙蓉,等. 基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J]. 振动与冲击,2018,37(19):132-139.
LI Heng, ZHANG Qing, QIN Xian Rong, et al. Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network[J]. Journal of Vibration and Shock, 2018, 37(19): 132-139.
[10] 景涛. 基于改进广义回归神经网络的雷达故障预测[J]. 科学技术与工程, 2009, 9(15):4492-4494+4500.
JING Tao. Fault Prediction of Radar Based on Modified General Regression Neural Network[J]. Science Technology and Engineering, 2009, 9(15): 4492-4494+4500.
[11] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69:46-61.
[12] ZHANG S, ZHOU Y, LI Z, et al. Grey wolf optimizer for unmanned combat aerial vehicle path planning[J]. Advances in Engineering Software, 2016, 99: 121-136.
[13] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition [J]. Transactions on Signal Processing,2013, 10 (1109): 1-15.
[14] 汤杰,陈剑,杨斌. 基于IVMD的单通道盲源分离方法及其应用[J]. 组合机床与自动化加工技术,2018,(07):25-30.
TANG Jie, CHEN Jian, YANG Bin. Single-channel blind source separation based on IVMD and its application[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2018, (07): 25-3.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}