利用Fe-Ga合金材料收集振动与发电特性的实验研究

刘慧芳1,2,赵强1,高爽1,张靖1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (21) : 132-139.

PDF(3176 KB)
PDF(3176 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (21) : 132-139.
论文

利用Fe-Ga合金材料收集振动与发电特性的实验研究

  • 刘慧芳1,2,赵强1,高爽1,张靖1
作者信息 +

Tests for collection of vibration and power generation characteristics with Fe-GA alloy material

  • LIU Huifang1,2, ZHAO Qiang1, GAO Shuang1, ZHANG Jing1
Author information +
文章历史 +

摘要

随着对无线传感网络、远程健康监测等技术的高需求,振动能量收集得到了显著的发展。设计、研制和实验了一种基于磁致伸缩材料(Fe-Ga合金)的悬臂式新型振动能量收集与发电的装置,通过对环境中的振动能量进行收集进而转换为电能。根据对Fe-Ga合金悬臂梁机械动力学模型分析,建立了系统最大传递效率数学模型,明确了获得最大传递效率的条件;利用李沙育图形法测量确定了系统的前五阶共振频率,通过综合实验明确了振动激励频率和幅值等对系统输出电压的影响规律,提出了通过配装附加质量对系统进行调谐而获得最佳能量转换能力的方法。通过信号接口电路的辅助,样机成功持续点亮了多个LED发光二极管和LED便携电脑键盘灯,进一步验证了样机的可持续发电能力。

Abstract

With more and more demandsfor technologies, such as, wireless sensor networks and remote health monitoring, vibration energy collectionis significantly developed.Here, a new type cantilevered vibration energy collection and power generation device based on magneto-strictive material Fe-Ga alloy was designed, developed and tested to harvest vibration energy in environment and convert it into electric energy.According to the dynamic model analysis of a Fe-Ga alloy cantilever beam, the mathematical model for the system’s maximum transfer efficiency was established, and the conditions to obtain the maximum transfer efficiency were clarified.The first five orders resonance frequencies of the system were determined with Lissajous graphic method.The influence law of frequency and amplitude of vibration excitation on the output voltage of the system was studied with comprehensive tests.A method to obtain the optimal energy conversion capability by adjusting the system with additional mass was proposed.With the aid of a signal interface circuit, the prototype successfully lighted up multiple LED light-emitting diodes and LED portable computer keyboard lights to further verify the sustainable power generation capability of the prototype.

关键词

振动能量收集 / Fe-Ga合金 / 传递效率 / 发电特性

Key words

vibration energy collection;Fe-Ga alloy / transfer efficiency / power generation characteristics

引用本文

导出引用
刘慧芳1,2,赵强1,高爽1,张靖1. 利用Fe-Ga合金材料收集振动与发电特性的实验研究[J]. 振动与冲击, 2020, 39(21): 132-139
LIU Huifang1,2, ZHAO Qiang1, GAO Shuang1, ZHANG Jing1. Tests for collection of vibration and power generation characteristics with Fe-GA alloy material[J]. Journal of Vibration and Shock, 2020, 39(21): 132-139

参考文献

[1]  TANG Kun,SHI Rong-hua, ZHANG Ming-ying, et al. Bidirectional secondary transmissions with energy harvesting in cognitive wireless sensor networks[J].Cent.South Univ.(2018)25:2626-2640.
[2]  赵帅.基于压电发电的环境信息监测节点自取能技术研究[D].太原理工大学, 2016.
Zhao Shuai. Research on self-extracting energy technology of environmental information monitoring nodes based on piezoelectric power generation [D]. Taiyuan University of Technology, 2016.
[3]  邹云峰,何旭辉,郭向荣,等. 横风下流线箱型桥-轨道交通车辆气动干扰风洞实验研究[J]. 振动与冲击, 2017, 36(5): 95-101.
ZOU Yunfeng, HE Xuhui, GUO Xiangrong, et al. Wind tunnel tests for aerodynamic interference between streamline type box bridges and rail vehicles under cross wind. JOURNAL OF VIBRATION AND SHOCK, 2017, 36(5): 95-101.
[4]  刘慧芳,赵俊杰.汽车燃油喷射系统用磁致伸缩驱动构件的建模与特性研究[J].传感技术学报,2016,29(12):1797-1803.
Liu Huifang, Zhao Junjie. Modeling and Characteristics of Magnetostrictive Driving Componentsfor Automotive Fuel Injection System [J]. Journal of Sensing Technology, 2016, 29 (12): 1797-1803.
[5]  J.M.Rabaey,M.J.L.da Silva Jr,D.Patel,S.Roundy,PicoRadio .supports ad hoc ultra low-power wireless networking[J].IEEE Computer ,2000,33(7):42-48.
[6]  PEDCHENKO A V, MEYER J J, BARTH EJ. Assessing stability and predicting power generation of electromagnetic vibration energyharvesters using bridge vibration data [J]. IEEE/ASME Transactions on Mechatronics. 2017, 22 (1): 269-279.
[7]  LEADENHAM S,ERTURK A. Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation [J]. Nonlinear Dynamics,2015, 79 (3): 1727-1743.
[8]  蒋州, 曹军义, 凌明祥,等. 新型双臂菱形压电柔性机构理论设计与建模[J]. 中国机械工程,2017,28(21):2557-2561.
Jiangzhou, Cao Junyi, Ling Mingxiang, et al. Theoretical design and modeling of a new double-arm diamond piezoelectric flexible mechanism [J]. China Mechanical Engineering, 2017, 28 (21): 2557-2561.
[9]  徐振龙, 单小彪,谢涛. 宽频压电振动俘能器的研究现状综述[J]. 振动与冲击, 2018, 37(8): 190-199.
XU Zhenlong, SHAN Xiaobiao, XIE Tao. A review of broadband piezoelectric vibration energy harvester. JOURNAL OF VIBRATION AND SHOCK, 2018, 37(8): 190-199.
[10]  吴义鹏, 季宏丽,裘进浩, 等. 共振频率可调式非线性压电振动能量收集器[J]. 振动与冲击, 2017, 36(5): 12-16.
WU Yipeng, JI Hongli, QIU Jinhao, et al. A nonlinear piezoelectric vibration energy harvesting device with tunable resonance frequencies. JOURNAL OF VIBRATION AND SHOCK, 2017, 36(5): 12-16.
[11]  马星晨, 叶瑞丰, 张添乐,等. 基于单极性驻极体薄膜的振动能俘获研究 [J]. 物理学报, 2016, 65(17): 177701-1-177701-8.
Ma Xingchen, Ye Ruifeng, Zhang Tianle, et al. Vibrational energy capture based on unipolar electret films [J]. Journal of Physics, 2016, 65 (17): 177701-1-177701-8.
[12]  Hongjiang Zhang, Senlin Jiang, and Xuefeng He . Impact-based piezoelectric energy harvester for multidimensional, low-level, broadband, and low-frequency vibrations. APPLIED PHYSICS LETTERS 110, 223902(2017).
[13]  Huaxia Deng, Zhemin Wang, Yu Du, Jin Zhang , et al. A seesaw-type approach for enhancing nonlinear energy harvesting [J]. APPLIED PHYSICS LETTERS 112, 213902(2018).
[14]  Chaohui Wang, Jianxiong Zhao, Qiang Li, et al. Optimization design and experimental investigation of piezoelectric energy harvesting devices for pavement [J]. Applied Energy 229 (2018): 18-30.
[15]  桑杰. 磁致伸缩振动发电理论和能量采集电路的研究[D]. 河北工业大学, 2015.
Sangjie.Research on magnetostrictive vibration power generation theory and energy acquisition circuit[D]. Hebei University of Technology, 2015.
[16]  Yoo J H, Flatau A B. A bending mode galfenol electric power harvester [J]. Journal of Intelligent Material Systems and Structures. 2012, 23(6): 647-654.
[17]   樊长在,杨庆新,杨文荣,闫荣格,孙景峰,刘福贵.基于磁致伸缩逆效应的超磁致伸缩力传感器[J].仪表技术与传感器,2007(04):5-7.
Fan Changzhi, Yang Qingxin, Yang Wenrong, Yan Rongge, Sun Jingfeng, Liu Fugui. Giant Magnetostrictive Force Sensor Based on Magnetostrictive Inverse Effect [J]. Instrument Technology and Sensors, 2007 (04): 5-7.
[18]   王博文,曹淑瑛,黄文美.磁致伸缩材料与器件[M].北京:冶金工业出版社,2008: 239-239.
 Wang Bowen, Cao Shuying, Huang Wenmei. Magnetostrictive Materials and Devices [M]. Beijing: Metallurgical Industry Press, 2008: 239-239.
[19]  Baiping Yan, Chengming Zhang, and Lili Li. Design and Fabrication of a High-Efficiency Magnetostrictive Energy Harvester for High-Impact Vibration Systems[J]. IEEE Transactions On Magnetics, 2015. 51(11) .
[20]  郭岩.基于磁致伸缩材料的振动能量采集研究[D].天津:河北工业大学,2014.
Guo Yan. Vibration energy acquisition based on magnetostrictive materials [D]. Tianjin: Hebei University of Technology, 2014.
[21]  白惠珍, 王宝珠, 张惠娟. 电路理论基础.  北京: 中国科学技术出版社, 2008.
Bai Huizhen, Wang Baozhu, Zhang Huijuan. Theoretical Basis of Circuits. Beijing: China Science and Technology Press, 2008.

PDF(3176 KB)

233

Accesses

0

Citation

Detail

段落导航
相关文章

/