双自由度磁悬浮式轨道车辆振动俘能器的研究

孔令强,袁天辰,杨俭,杨沥

振动与冲击 ›› 2020, Vol. 39 ›› Issue (21) : 156-162.

PDF(2296 KB)
PDF(2296 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (21) : 156-162.
论文

双自由度磁悬浮式轨道车辆振动俘能器的研究

  • 孔令强,袁天辰,杨俭,杨沥
作者信息 +

A 2-DOF vibration energy capture device for magnetic levitation rail vehicle

  • KONG Lingqiang, YUAN Tianchen, YANG Jian, YANG Li
Author information +
文章历史 +

摘要

提出了一种双自由度磁悬浮轨道车辆振动俘能器,该俘能器安装于轨道车辆转向架处,与单自由度磁悬浮轨道车辆振动俘能器相比振动能量收集效率得到显著提高。建立了双自由度振动俘能系统的物理以及数学模型,并对其动力学特性进行了分析,运用龙格库塔法计算得到双自由度俘能系统在简谐振动激励和轨道车辆垂向振动激励下的振动特性和输出功率并与单自由度俘能系统进行对比,研究结果表明:双自由度俘能系统共有两个共振峰,拓宽了俘能器的工作频带范围,通过改变尺寸参数可以提升系统针对目标频率的俘能效率;在简谐激励和轨道车辆振动激励下双自由度俘能系统的输出功率是单自由度俘能系统的1.5倍,能够高效俘获轨道车辆的振动能量。

Abstract

Here, a 2-DOF vibration energy capture devicefor magnetic levitation rail vehicle was proposed.This energy capture device was installed at the rail vehicle’s bogie, and its vibration energy collection efficiency was significantly improved compared with that of a single-DOF one.The dynamic model of the 2-DOF vibration energy capture device were established theoretically, and its dynamic characteristics were analyzed.Runge-Kutta method was used to calculate and obtain its dynamic characteristics and output power under simple harmonic vibration excitation and vertical vibration excitation of the rail vehicle.The calculated results were compared with those of the single-DOF energy capture device.Results showed that the 2-DOF energy capture system has two resonance peaks to widen its working frequency band range; changing its size parameters can lift its energy capture efficiency aiming at target frequency; the output power of the 2-DOF energy capture system is 1.5 times of that of the single-DOF one under simple harmonic vibration excitation and vertical vibration excitation of the rail vehicle to effectively capture vibration energy of the rail vehicle.

关键词

轨道车辆 / 磁悬浮 / 振动能量 / 俘能

Key words

rail vehicle / magnetic levitation / vibration energy / energy capture

引用本文

导出引用
孔令强,袁天辰,杨俭,杨沥. 双自由度磁悬浮式轨道车辆振动俘能器的研究[J]. 振动与冲击, 2020, 39(21): 156-162
KONG Lingqiang, YUAN Tianchen, YANG Jian, YANG Li. A 2-DOF vibration energy capture device for magnetic levitation rail vehicle[J]. Journal of Vibration and Shock, 2020, 39(21): 156-162

参考文献

[1] 杨俭, 李发扬, 宋瑞刚. 城市轨道交通车辆制动能量回收技术现状及研究进展[J]. 铁道学报, 2011, 33(2): 26-33.
Yang Jian, Li Yang, Song Ruigang. Current status and research progress of braking energy recovery technology for urban rail transit vehicles [J]. Journal of Railway, 2011, 33 (2): 26-33.
[2] 王光庆, 岳玉秋, 展永政, et al. 宽频压电振动俘能器的实验研究[J]. 振动、测试与诊断, 2017(2).
Wang Guangqing, Yue Yuqiu, Zhan Yongzheng, et al. Experimental Study of Broadband Piezoelectric Vibration Energy  Harvester[J]. Vibration, Testing and Diagnosis, 2017(2).
[3] 贺婷, 丑修建, 王二伟, 等. 单悬臂梁阵列式压电俘能器的研巧[J]. 功能材料, 2015(14): 14112-14117.
Heting, Ugly Built, Wang Erwei, et al. The ingenuity of single cantilever array piezoelectric energy collector [J]. Functional materials, 2015 (14): 14112-14117.
[4] Lemaire E, Thuau D, Caillard B,et al. Fast fabrication process of low environmental impact MEMS[J]. Journal of Cleaner Production, 2015.30(10): 1-1.
[5] 张旭辉, 吴中华, 赖正鹏, et al. 多场耦合多方向振动俘能器建模及响应分析[J]. 振动.测试与诊断, 2019(1).
Zhang Xuhui, Wu Zhonghua, Lai Zhengpeng, et al. Modeling and response analysis of multi-field coupled multi-directional vibration energy harvester[J]. VIBRATION, Measurement & Diagnosis, 2019(1).
[6] Ando B, Baglio S, Episcopo G L, et al. Investigation on mechanically bistable MEMS device for energy harvesting from vibrations[J]. Microelectromechanical Systems, Journal of, 2012, 21(4): 779-790.
[7] Le C P, Halvorsen E, Sorasen O, et al. Microscale electrostatic energy harvester using internal impacts[J]. Journal of Intelligent Material Systems and Structures, 2012: 1045389X12436739.
[8] Ching N N H, Wong H Y, Li W J, et al. A b laser-micromachined multi-modal resonating power transducer for wireless sensings ystems[J]. Sensors and Actuators: A, 2002, 97/98(4) 685-690.
[9] Pan C T, Chen Y J, Shen S C. Sinmulation and analysis of electromagnetic in-plane micro-generator[J]. Journal of Nanolithography, MEMS, andMOEMS , 2009, 80313304-1-031304-8.
[10] Mann B P, Sims N D. Energy harvesting  from the nonlinear oscillations of  magnetic levitation[J]. Journal of Sound and Vibration,2009,319(1/2):515-530.
[11] Fosal A R M, Chinsuk H, Chung G S. Multi-frequency energy harvester using a  magnetic spring cantilever[J]. Sensors and Actuators:A, 2012, 182(4): 106-113.
[12] Tang L , Yang Y . A nonlinear piezoelectric energy harvester with magnetic oscillator[J]. Applied Physics Letters, 2012, 101(9):R1.
[13] Chen L Q , Jiang W A . Internal Resonance Energy Harvesting[J]. Journal of Applied Mechanics, 2015, 82(3): 031004.
[14] 翟婉明. 车辆-轨道耦合动力学(第三版)[M]. 北京:科学出版社, 2007.
Zhai Wanming. Vehicle-Track Coupled Dynamics (Third Edition) [M]. Beijing: Science Press, 2007.

PDF(2296 KB)

318

Accesses

0

Citation

Detail

段落导航
相关文章

/