压缩感知结合卷积网络的天然气管道泄漏孔径识别

温江涛1,付磊1,孙洁娣2,3,王涛1,张光宇1,张鹏程1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (21) : 17-23.

PDF(1967 KB)
PDF(1967 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (21) : 17-23.
论文

压缩感知结合卷积网络的天然气管道泄漏孔径识别

  • 温江涛1,付磊1,孙洁娣2,3,王涛1,张光宇1,张鹏程1
作者信息 +

Recognition of leakage aperture of natural gas pipeline based on compression sensing and convolution network

  • WEN Jiangtao1, FU Lei1, SUN Jiedi2,3, WANG Tao1, ZHANG Guangyu1, ZHANG Pengcheng1
Author information +
文章历史 +

摘要

针对传统天然气管道泄漏孔径检测面临的原始数据冗余性大、特征选取主观依赖性强以及复杂环境下识别准确率低等问题,提出了一种将压缩感知与深度卷积神经网络相结合的泄漏孔径识别方法。首先利用随机高斯矩阵对原始泄漏信号进行压缩采集,以较少的压缩感知域数据获取全部泄漏信息;然后构建深度一维卷积神经网络,将压缩采集数据送入网络中实现自适应特征提取及高准确度泄漏孔径识别;还对主要参数的影响进行了深入的分析。实验结果表明,该方法能够快速、准确地实现天然气管道泄漏孔径识别,且在低信噪比环境下具有较好的鲁棒性,总体识别效果优于传统的分类方法。

Abstract

Aiming at problems of large redundancy of raw data, strong subjectivity dependence of feature selection and low recognition accuracy under complex environment for traditional natural gas pipeline leakage aperture recognition, a leakage aperture recognition method based on compression sensing and 1-D convolution network was proposed.Firstly, the random Gaussian matrix was used to do compression collection of original leakage signals, and the full leakage information was obtained with less compression sensing domain data.Then, a deep 1-D convolutional network was constructed, and the compression collection data were fed into the network to realize adaptive feature extraction and leakage aperture recognition with high accuracy.Finally, effects of the main parameters on recognition results were analyzed.Test results showed that the proposed method can quickly and accurately realize the leakage aperture identification of natural gas pipelines; it has better robustness under low SNR environment; its overall recognition effect is superior to that of the traditional classification method.

关键词

管道泄漏孔径识别 / 压缩感知采集 / 1维卷积网络 / 自适应特征提取

Key words

pipeline leakage aperture recognition / compression sensing collection / 1-D convolutional network / adaptive feature extraction

引用本文

导出引用
温江涛1,付磊1,孙洁娣2,3,王涛1,张光宇1,张鹏程1. 压缩感知结合卷积网络的天然气管道泄漏孔径识别[J]. 振动与冲击, 2020, 39(21): 17-23
WEN Jiangtao1, FU Lei1, SUN Jiedi2,3, WANG Tao1, ZHANG Guangyu1, ZHANG Pengcheng1. Recognition of leakage aperture of natural gas pipeline based on compression sensing and convolution network[J]. Journal of Vibration and Shock, 2020, 39(21): 17-23

参考文献

[1] Sun J , Xiao Q , Wen J , et al. Natural gas pipeline leak aperture identification and location based on local mean decomposition analysis[J]. Measurement, 2016, 79:147-157.
[2] 王学伟, 苏丹, 袁洪芳等 小波包多级树模型管道泄漏信号压缩感知方法[J]. 仪器仪表学报, 2014(3):520-526.
WANG Xue-wei, SU Dan, YUAN Hong-fang, et al. Pipeline leakage signal compressed sensing based on wavelet packet hierarchical tree model[J]. Chinese Journal of Scientific Instrument, 2014(3):520-526.
[3] Cerrada M , Zurita G , Cabrera D , et al. Fault diagnosis in spur gears based on genetic algorithm and random forest[J]. Mechanical Systems and Signal Processing, 2015, 70-71:87-103.
[4] Qu Z , Feng H , Zeng Z , et al. A SVM-based pipeline leakage detection and pre-warning system[J]. Measurement, 2010, 43(4):513-519.
[5] Wang L, Gao X, Liu T, Gas pipeline small leakage feature extraction based on LMD envelope spectrum entropy and PCA–RWSVM[J]. Transactions of the Institute of Measurement and Control, 2016. 38(12): 1460-1470.
[6] 孙洁娣, 彭志涛, 温江涛,等. 基于总体局域均值分解及稀疏表示分类的天然气管道泄漏孔径识别[J]. 中国机械工程, 2017, 28(10):1202-1209.
SUN Jie-di,PENG Zhi-tao,WEN Jiang-tao, et. al. Natural Gas Pipeline Leakage Aperture Identification Based on ELMD and SRC[J]. Journal of Mechanical Engineering, 2017, 28(10): 1202-1209.
[7] Lu W, Zhang L, Wei L, et al. Research on a small-noise reduction method based on EMD and its application in pipeline leakage detection[J]. Journal of Loss Prevention in the Process Industries, 2016, 41:S0950423016300419.
[8] 孙洁娣, 乔艳雷, 温江涛. 压缩感知域智能天然气管道泄漏孔径识别[J]. 仪器仪表学报, 2017(12):3071-3078.
SUN Jie-di,Qiao Yan-lei,WEN Jiang-tao, et. al. Pipeline leak aperture identification based on compressed sensing[J]. Chinese Journal of Scientific Instrument, 2017(12):3071-3078.
[9] Zhu S B , Li Z L , Zhang S M , et al. Deep belief network-based internal valve leakage rate prediction approach[J]. Measurement, 2019, 133:182-192.
[10] Guo X , Chen L , Shen C . Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis[J]. Measurement, 2016, 93:490-502.
[11] Levent E , Turker I , Serkan K . A Generic Intelligent Bearing Fault Diagnosis System Using Compact Adaptive 1D CNN Classifier[J]. Journal of Signal Processing Systems, 2019,91:179-189.
[12] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[13] Lecun Y, Bengio Y, Hinton G. Deep learning.[J]. Nature, 2015, 521(7553):436.
[14] 葛明, 钱玲. 基于A*OMP算法及其改进算法的宽带雷达信号稀疏分解[J]. 舰船电子对抗, 2015(1):65-69.
Ge Ming, Qian Ling. Sparse Decomposition of Broadband Radar Signals Based on A* OMP Algorithm and Its Improved Algorithm[J]. Shipboard Electronic Countermeasure, 2015(1): 65-69.
[15] 温江涛, 闫常弘, 孙洁娣等. 基于压缩采集与深度学习的轴承故障诊断方法[J]. 仪器仪表学报, 2018(1):171-179.
WEN Jiang-tao,YAN Chang-hong,Sun,Jie-di, et al. Bearing fault diagnosis method based on compressed acquisition and deep learning[J]. Chinese Journal of Scientific Instrument, 2018(1):171-179.
[16] Candes E J, Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12):4203-4215.
[17] 吴春志, 江鹏程, 冯辅周等. 基于一维卷积神经网络的齿轮箱故障诊断[J]. 振动与冲击, 2018, 37(22):56-61.
WU Chun-zhi, JIANG Peng-cheng, FENG Fu-zhou, et al. Faults diagnosis method for gearboxes based on a 1-D convolutional neural network[J]. Journal of Vibration and Shock, 2018, 37(22):56-61.
[18] Guoqian J , Haibo H , Jun Y , et al. Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox[J]. IEEE Transactions on Industrial Electronics, 2018:1-1.
[19] 周奇才, 刘星辰, 赵炯, et al. 旋转机械一维深度卷积神经网络故障诊断研究[J]. 振动与冲击, 2018, 37(23):39-45.
ZHOU Qi-cai, LIU Xing-chen, ZhAO Tong,et al.Fault diagnosis for rotating machinery based on 1D depth convolutional neural network[J].Journal of Vibration and Shock, 2018, 37(23):39-45.

PDF(1967 KB)

Accesses

Citation

Detail

段落导航
相关文章

/